📄 rfc3833.txt
字号:
4.1. Interactions With Other Protocols The above discussion has concentrated exclusively on attacks within the boundaries of the DNS protocol itself, since those are (some of) the problems against which DNSSEC was intended to protect. There are, however, other potential problems at the boundaries where DNS interacts with other protocols.4.2. Securing DNS Dynamic Update DNS dynamic update opens a number of potential problems when combined with DNSSEC. Dynamic update of a non-secure zone can use TSIG to authenticate the updating client to the server. While TSIG does not scale very well (it requires manual configuration of shared keysAtkins & Austein Informational [Page 11]RFC 3833 DNS Threat Analysis August 2004 between the DNS name server and each TSIG client), it works well in a limited or closed environment such as a DHCP server updating a local DNS name server. Major issues arise when trying to use dynamic update on a secure zone. TSIG can similarly be used in a limited fashion to authenticate the client to the server, but TSIG only protects DNS transactions, not the actual data, and the TSIG is not inserted into the DNS zone, so resolvers cannot use the TSIG as a way of verifying the changes to the zone. This means that either: a) The updating client must have access to a zone-signing key in order to sign the update before sending it to the server, or b) The DNS name server must have access to an online zone-signing key in order to sign the update. In either case, a zone-signing key must be available to create signed RRsets to place in the updated zone. The fact that this key must be online (or at least available) is a potential security risk. Dynamic update also requires an update to the SERIAL field of the zone's SOA RR. In theory, this could also be handled via either of the above options, but in practice (a) would almost certainly be extremely fragile, so (b) is the only workable mechanism. There are other threats in terms of describing the policy of who can make what changes to which RRsets in the zone. The current access control scheme in Secure Dynamic Update is fairly limited. There is no way to give fine-grained access to updating DNS zone information to multiple entities, each of whom may require different kinds of access. For example, Alice may need to be able to add new nodes to the zone or change existing nodes, but not remove them; Bob may need to be able to remove zones but not add them; Carol may need to be able to add, remove, or modify nodes, but only A records. Scaling properties of the key management problem here are a particular concern that needs more study.4.3. Securing DNS Zone Replication As discussed in previous sections, DNSSEC per se attempts to provide data integrity and data origin authentication services on top of the normal DNS query protocol. Using the terminology discussed in [RFC3552], DNSSEC provides "object security" for the normal DNS query protocol. For purposes of replicating entire DNS zones, however, DNSSEC does not provide object security, because zones include unsigned NS RRs and glue at delegation points. Use of TSIG toAtkins & Austein Informational [Page 12]RFC 3833 DNS Threat Analysis August 2004 protect zone transfer (AXFR or IXFR) operations provides "channel security", but still does not provide object security for complete zones. The trust relationships involved in zone transfer are still very much a hop-by-hop matter of name server operators trusting other name server operators rather than an end-to-end matter of name server operators trusting zone administrators. Zone object security was not an explicit design goal of DNSSEC, so failure to provide this service should not be a surprise. Nevertheless, there are some zone replication scenarios for which this would be a very useful additional service, so this seems like a useful area for future work. In theory it should not be difficult to add zone object security as a backwards compatible enhancement to the existing DNSSEC model, but the DNSEXT WG has not yet discussed either the desirability of or the requirements for such an enhancement.5. Conclusion Based on the above analysis, the DNSSEC extensions do appear to solve a set of problems that do need to be solved, and are worth deploying.Security Considerations This entire document is about security considerations of the DNS. The authors believe that deploying DNSSEC will help to address some, but not all, of the known threats to the DNS.Acknowledgments This note is based both on previous published works by others and on a number of discussions both public and private over a period of many years, but particular thanks go to Jaap Akkerhuis, Steve Bellovin, Dan Bernstein, Randy Bush, Steve Crocker, Olafur Gudmundsson, Russ Housley, Rip Loomis, Allison Mankin, Paul Mockapetris, Thomas Narten Mans Nilsson, Pekka Savola, Paul Vixie, Xunhua Wang,Atkins & Austein Informational [Page 13]RFC 3833 DNS Threat Analysis August 2004 and any other members of the DNS, DNSSEC, DNSIND, and DNSEXT working groups whose names and contributions the authors have forgotten, none of whom are responsible for what the authors did with their ideas. As with any work of this nature, the authors of this note acknowledge that we are standing on the toes of those who have gone before us. Readers interested in this subject may also wish to read [Bellovin95], [Schuba93], and [Vixie95].Normative References [RFC1034] Mockapetris, P., "Domain names - concepts and facilities", STD 13, RFC 1034, November 1987. [RFC1035] Mockapetris, P., "Domain names - implementation and specification", STD 13, RFC 1035, November 1987. [RFC1123] Braden, R., "Requirements for Internet Hosts - Application and Support", STD 3, RFC 1123, October 1989. [RFC2181] Elz, R. and R. Bush, "Clarifications to the DNS Specification", RFC 2181, July 1997. [RFC2308] Andrews, M., "Negative Caching of DNS Queries (DNS NCACHE)", RFC 2308, March 1998. [RFC2671] Vixie, P., "Extension Mechanisms for DNS (EDNS0)", RFC 2671, August 1999. [RFC2845] Vixie, P., Gudmundsson, O., Eastlake 3rd, D., and B. Wellington, "Secret Key Transaction Authentication for DNS (TSIG)", RFC 2845, May 2000. [RFC2930] Eastlake 3rd, D., "Secret Key Establishment for DNS (TKEY RR)", RFC 2930, September 2000. [RFC3007] Wellington, B., "Secure Domain Name System (DNS) Dynamic Update", RFC 3007, November 2000. [RFC2535] Eastlake 3rd, D., "Domain Name System Security Extensions", RFC 2535, March 1999.Atkins & Austein Informational [Page 14]RFC 3833 DNS Threat Analysis August 2004Informative References [RFC3552] Rescorla, E. and B. Korver, "Guidelines for Writing RFC Text on Security Considerations", BCP 72, RFC 3552, July 2003. [Bellovin95] Bellovin, S., "Using the Domain Name System for System Break-Ins", Proceedings of the Fifth Usenix Unix Security Symposium, June 1995. [Galvin93] Design team meeting summary message posted to dns- security@tis.com mailing list by Jim Galvin on 19 November 1993. [Schuba93] Schuba, C., "Addressing Weaknesses in the Domain Name System Protocol", Master's thesis, Purdue University Department of Computer Sciences, August 1993. [Vixie95] Vixie, P, "DNS and BIND Security Issues", Proceedings of the Fifth Usenix Unix Security Symposium, June 1995.Authors' Addresses Derek Atkins IHTFP Consulting, Inc. 6 Farragut Ave Somerville, MA 02144 USA EMail: derek@ihtfp.com Rob Austein Internet Systems Consortium 950 Charter Street Redwood City, CA 94063 USA EMail: sra@isc.orgAtkins & Austein Informational [Page 15]RFC 3833 DNS Threat Analysis August 2004Full Copyright Statement Copyright (C) The Internet Society (2004). This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights. This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.Intellectual Property The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79. Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr. The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf- ipr@ietf.org.Acknowledgement Funding for the RFC Editor function is currently provided by the Internet Society.Atkins & Austein Informational [Page 16]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -