📄 rfc3513.txt
字号:
Hinden & Deering Standards Track [Page 20]RFC 3513 IPv6 Addressing Architecture April 2003APPENDIX A: Creating Modified EUI-64 format Interface Identifiers Depending on the characteristics of a specific link or node there are a number of approaches for creating Modified EUI-64 format interface identifiers. This appendix describes some of these approaches.Links or Nodes with IEEE EUI-64 Identifiers The only change needed to transform an IEEE EUI-64 identifier to an interface identifier is to invert the "u" (universal/local) bit. For example, a globally unique IEEE EUI-64 identifier of the form: |0 1|1 3|3 4|4 6| |0 5|6 1|2 7|8 3| +----------------+----------------+----------------+----------------+ |cccccc0gcccccccc|ccccccccmmmmmmmm|mmmmmmmmmmmmmmmm|mmmmmmmmmmmmmmmm| +----------------+----------------+----------------+----------------+ where "c" are the bits of the assigned company_id, "0" is the value of the universal/local bit to indicate global scope, "g" is individual/group bit, and "m" are the bits of the manufacturer- selected extension identifier. The IPv6 interface identifier would be of the form: |0 1|1 3|3 4|4 6| |0 5|6 1|2 7|8 3| +----------------+----------------+----------------+----------------+ |cccccc1gcccccccc|ccccccccmmmmmmmm|mmmmmmmmmmmmmmmm|mmmmmmmmmmmmmmmm| +----------------+----------------+----------------+----------------+ The only change is inverting the value of the universal/local bit.Links or Nodes with IEEE 802 48 bit MAC's [EUI64] defines a method to create a IEEE EUI-64 identifier from an IEEE 48bit MAC identifier. This is to insert two octets, with hexadecimal values of 0xFF and 0xFE, in the middle of the 48 bit MAC (between the company_id and vendor supplied id). For example, the 48 bit IEEE MAC with global scope:Hinden & Deering Standards Track [Page 21]RFC 3513 IPv6 Addressing Architecture April 2003 |0 1|1 3|3 4| |0 5|6 1|2 7| +----------------+----------------+----------------+ |cccccc0gcccccccc|ccccccccmmmmmmmm|mmmmmmmmmmmmmmmm| +----------------+----------------+----------------+ where "c" are the bits of the assigned company_id, "0" is the value of the universal/local bit to indicate global scope, "g" is individual/group bit, and "m" are the bits of the manufacturer- selected extension identifier. The interface identifier would be of the form: |0 1|1 3|3 4|4 6| |0 5|6 1|2 7|8 3| +----------------+----------------+----------------+----------------+ |cccccc1gcccccccc|cccccccc11111111|11111110mmmmmmmm|mmmmmmmmmmmmmmmm| +----------------+----------------+----------------+----------------+ When IEEE 802 48bit MAC addresses are available (on an interface or a node), an implementation may use them to create interface identifiers due to their availability and uniqueness properties.Links with Other Kinds of Identifiers There are a number of types of links that have link-layer interface identifiers other than IEEE EIU-64 or IEEE 802 48-bit MACs. Examples include LocalTalk and Arcnet. The method to create an Modified EUI- 64 format identifier is to take the link identifier (e.g., the LocalTalk 8 bit node identifier) and zero fill it to the left. For example, a LocalTalk 8 bit node identifier of hexadecimal value 0x4F results in the following interface identifier: |0 1|1 3|3 4|4 6| |0 5|6 1|2 7|8 3| +----------------+----------------+----------------+----------------+ |0000000000000000|0000000000000000|0000000000000000|0000000001001111| +----------------+----------------+----------------+----------------+ Note that this results in the universal/local bit set to "0" to indicate local scope.Links without Identifiers There are a number of links that do not have any type of built-in identifier. The most common of these are serial links and configured tunnels. Interface identifiers must be chosen that are unique within a subnet-prefix.Hinden & Deering Standards Track [Page 22]RFC 3513 IPv6 Addressing Architecture April 2003 When no built-in identifier is available on a link the preferred approach is to use a global interface identifier from another interface or one which is assigned to the node itself. When using this approach no other interface connecting the same node to the same subnet-prefix may use the same identifier. If there is no global interface identifier available for use on the link the implementation needs to create a local-scope interface identifier. The only requirement is that it be unique within a subnet prefix. There are many possible approaches to select a subnet-prefix-unique interface identifier. These include: Manual Configuration Node Serial Number Other node-specific token The subnet-prefix-unique interface identifier should be generated in a manner that it does not change after a reboot of a node or if interfaces are added or deleted from the node. The selection of the appropriate algorithm is link and implementation dependent. The details on forming interface identifiers are defined in the appropriate "IPv6 over <link>" specification. It is strongly recommended that a collision detection algorithm be implemented as part of any automatic algorithm.Hinden & Deering Standards Track [Page 23]RFC 3513 IPv6 Addressing Architecture April 2003APPENDIX B: Changes from RFC-2373 The following changes were made from RFC-2373 "IP Version 6 Addressing Architecture": - Clarified text in section 2.2 to allow "::" to represent one or more groups of 16 bits of zeros. - Changed uniqueness requirement of Interface Identifiers from unique on a link to unique within a subnet prefix. Also added a recommendation that the same interface identifier not be assigned to different machines on a link. - Change site-local format to make the subnet ID field 54-bit long and remove the 38-bit zero's field. - Added description of multicast scop values and rules to handle the reserved scop value 0. - Revised sections 2.4 and 2.5.6 to simplify and clarify how different address types are identified. This was done to insure that implementations do not build in any knowledge about global unicast format prefixes. Changes include: o Removed Format Prefix (FP) terminology o Revised list of address types to only include exceptions to global unicast and a singe entry that identifies everything else as Global Unicast. o Removed list of defined prefix exceptions from section 2.5.6 as it is now the main part of section 2.4. - Clarified text relating to EUI-64 identifiers to distinguish between IPv6's "Modified EUI-64 format" identifiers and IEEE EUI- 64 identifiers. - Combined the sections on the Global Unicast Addresses and NSAP Addresses into a single section on Global Unicast Addresses, generalized the Global Unicast format, and cited [AGGR] and [NSAP] as examples. - Reordered sections 2.5.4 and 2.5.5. - Removed section 2.7.2 Assignment of New IPv6 Multicast Addresses because this is being redefined elsewhere. - Added an IANA considerations section that updates the IANA IPv6 address allocations and documents the NSAP and AGGR allocations. - Added clarification that the "IPv4-compatible IPv6 address" must use global IPv4 unicast addresses. - Divided references in to normative and non-normative sections. - Added reference to [PRIV] in section 2.5.1 - Added clarification that routers must not forward multicast packets outside of the scope indicated in the multicast address. - Added clarification that routers must not forward packets with source address of the unspecified address. - Added clarification that routers must drop packets received on an interface with destination address of loopback. - Clarified the definition of IPv4-mapped addresses.Hinden & Deering Standards Track [Page 24]RFC 3513 IPv6 Addressing Architecture April 2003 - Removed the ABNF Description of Text Representations Appendix. - Removed the address block reserved for IPX addresses. - Multicast scope changes: o Changed name of scope value 1 from "node-local" to "interface-local" o Defined scope value 4 as "admin-local" - Corrected reference to RFC1933 and updated references. - Many small changes to clarify and make the text more consistent.Authors' Addresses Robert M. Hinden Nokia 313 Fairchild Drive Mountain View, CA 94043 USA Phone: +1 650 625-2004 EMail: hinden@iprg.nokia.com Stephen E. Deering Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA Phone: +1 408 527-8213 EMail: deering@cisco.comHinden & Deering Standards Track [Page 25]RFC 3513 IPv6 Addressing Architecture April 2003Full Copyright Statement Copyright (C) The Internet Society (2003). All Rights Reserved. This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English. The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns. This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.Acknowledgement Funding for the RFC Editor function is currently provided by the Internet Society.Hinden & Deering Standards Track [Page 26]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -