📄 rfc2845.txt
字号:
RFC 2845 DNS TSIG May 2000 Message, and decremented out of the DNS message header's ARCOUNT. At this point the keyed message digest operation is performed. If the algorithm name or key name is unknown to the recipient, or if the message digests do not match, the whole DNS message MUST be discarded. If the message is a query, a response with RCODE 9 (NOTAUTH) MUST be sent back to the originator with TSIG ERROR 17 (BADKEY) or TSIG ERROR 16 (BADSIG). If no key is available to sign this message it MUST be sent unsigned (MAC size == 0 and empty MAC). A message to the system operations log SHOULD be generated, to warn the operations staff of a possible security incident in progress. Care should be taken to ensure that logging of this type of event does not open the system to a denial of service attack. 3.3. Time values used in TSIG calculations The data digested includes the two timer values in the TSIG header in order to defend against replay attacks. If this were not done, an attacker could replay old messages but update the "Time Signed" and "Fudge" fields to make the message look new. This data is named "TSIG Timers", and for the purpose of digest calculation they are invoked in their "on the wire" format, in the following order: first Time Signed, then Fudge. For example:Field Name Value Wire Format Meaning----------------------------------------------------------------------Time Signed 853804800 00 00 32 e4 07 00 Tue Jan 21 00:00:00 1997Fudge 300 01 2C 5 minutes 3.4. TSIG Variables and Coverage When generating or verifying the contents of a TSIG record, the following data are digested, in network byte order or wire format, as appropriate: 3.4.1. DNS Message A whole and complete DNS message in wire format, before the TSIG RR has been added to the additional data section and before the DNS Message Header's ARCOUNT field has been incremented to contain the TSIG RR. If the message ID differs from the original message ID, the original message ID is substituted for the message ID. This could happen when forwarding a dynamic update request, for example.Vixie, et al. Standards Track [Page 6]RFC 2845 DNS TSIG May 2000 3.4.2. TSIG VariablesSource Field Name Notes-----------------------------------------------------------------------TSIG RR NAME Key name, in canonical wire formatTSIG RR CLASS (Always ANY in the current specification)TSIG RR TTL (Always 0 in the current specification)TSIG RDATA Algorithm Name in canonical wire formatTSIG RDATA Time Signed in network byte orderTSIG RDATA Fudge in network byte orderTSIG RDATA Error in network byte orderTSIG RDATA Other Len in network byte orderTSIG RDATA Other Data exactly as transmitted The RR RDLEN and RDATA MAC Length are not included in the hash since they are not guaranteed to be knowable before the MAC is generated. The Original ID field is not included in this section, as it has already been substituted for the message ID in the DNS header and hashed. For each label type, there must be a defined "Canonical wire format" that specifies how to express a label in an unambiguous way. For label type 00, this is defined in [RFC2535], for label type 01, this is defined in [RFC2673]. The use of label types other than 00 and 01 is not defined for this specification. 3.4.3. Request MAC When generating the MAC to be included in a response, the request MAC must be included in the digest. The request's MAC is digested in wire format, including the following fields: Field Type Description --------------------------------------------------- MAC Length u_int16_t in network byte order MAC Data octet stream exactly as transmitted 3.5. Padding Digested components are fed into the hashing function as a continuous octet stream with no interfield padding.Vixie, et al. Standards Track [Page 7]RFC 2845 DNS TSIG May 20004 - Protocol Details 4.1. TSIG generation on requests Client performs the message digest operation and appends a TSIG record to the additional data section and transmits the request to the server. The client MUST store the message digest from the request while awaiting an answer. The digest components for a request are: DNS Message (request) TSIG Variables (request) Note that some older name servers will not accept requests with a nonempty additional data section. Clients SHOULD only attempt signed transactions with servers who are known to support TSIG and share some secret key with the client -- so, this is not a problem in practice. 4.2. TSIG on Answers When a server has generated a response to a signed request, it signs the response using the same algorithm and key. The server MUST not generate a signed response to an unsigned request. The digest components are: Request MAC DNS Message (response) TSIG Variables (response) 4.3. TSIG on TSIG Error returns When a server detects an error relating to the key or MAC, the server SHOULD send back an unsigned error message (MAC size == 0 and empty MAC). If an error is detected relating to the TSIG validity period, the server SHOULD send back a signed error message. The digest components are: Request MAC (if the request MAC validated) DNS Message (response) TSIG Variables (response) The reason that the request is not included in this digest in some cases is to make it possible for the client to verify the error. If the error is not a TSIG error the response MUST be generated as specified in [4.2].Vixie, et al. Standards Track [Page 8]RFC 2845 DNS TSIG May 2000 4.4. TSIG on TCP connection A DNS TCP session can include multiple DNS envelopes. This is, for example, commonly used by zone transfer. Using TSIG on such a connection can protect the connection from hijacking and provide data integrity. The TSIG MUST be included on the first and last DNS envelopes. It can be optionally placed on any intermediary envelopes. It is expensive to include it on every envelopes, but it MUST be placed on at least every 100'th envelope. The first envelope is processed as a standard answer, and subsequent messages have the following digest components: Prior Digest (running) DNS Messages (any unsigned messages since the last TSIG) TSIG Timers (current message) This allows the client to rapidly detect when the session has been altered; at which point it can close the connection and retry. If a client TSIG verification fails, the client MUST close the connection. If the client does not receive TSIG records frequently enough (as specified above) it SHOULD assume the connection has been hijacked and it SHOULD close the connection. The client SHOULD treat this the same way as they would any other interrupted transfer (although the exact behavior is not specified). 4.5. Server TSIG checks Upon receipt of a message, server will check if there is a TSIG RR. If one exists, the server is REQUIRED to return a TSIG RR in the response. The server MUST perform the following checks in the following order, check KEY, check TIME values, check MAC. 4.5.1. KEY check and error handling If a non-forwarding server does not recognize the key used by the client, the server MUST generate an error response with RCODE 9 (NOTAUTH) and TSIG ERROR 17 (BADKEY). This response MUST be unsigned as specified in [4.3]. The server SHOULD log the error. 4.5.2. TIME check and error handling If the server time is outside the time interval specified by the request (which is: Time Signed, plus/minus Fudge), the server MUST generate an error response with RCODE 9 (NOTAUTH) and TSIG ERROR 18 (BADTIME). The server SHOULD also cache the most recent time signed value in a message generated by a key, and SHOULD return BADTIME if a message received later has an earlier time signed value. A response indicating a BADTIME error MUST be signed by the same key as theVixie, et al. Standards Track [Page 9]RFC 2845 DNS TSIG May 2000 request. It MUST include the client's current time in the time signed field, the server's current time (a u_int48_t) in the other data field, and 6 in the other data length field. This is done so that the client can verify a message with a BADTIME error without the verification failing due to another BADTIME error. The data signed is specified in [4.3]. The server SHOULD log the error. 4.5.3. MAC check and error handling If a TSIG fails to verify, the server MUST generate an error response as specified in [4.3] with RCODE 9 (NOTAUTH) and TSIG ERROR 16 (BADSIG). This response MUST be unsigned as specified in [4.3]. The server SHOULD log the error. 4.6. Client processing of answer When a client receives a response from a server and expects to see a TSIG, it first checks if the TSIG RR is present in the response. Otherwise, the response is treated as having a format error and discarded. The client then extracts the TSIG, adjusts the ARCOUNT, and calculates the keyed digest in the same way as the server. If the TSIG does not validate, that response MUST be discarded, unless the RCODE is 9 (NOTAUTH), in which case the client SHOULD attempt to verify the response as if it were a TSIG Error response, as specified in [4.3]. A message containing an unsigned TSIG record or a TSIG record which fails verification SHOULD not be considered an acceptable response; the client SHOULD log an error and continue to wait for a signed response until the request times out. 4.6.1. Key error handling If an RCODE on a response is 9 (NOTAUTH), and the response TSIG validates, and the TSIG key is different from the key used on the request, then this is a KEY error. The client MAY retry the request using the key specified by the server. This should never occur, as a server MUST NOT sign a response with a different key than signed the request. 4.6.2. Time error handling If the response RCODE is 9 (NOTAUTH) and the TSIG ERROR is 18 (BADTIME), or the current time does not fall in the range specified in the TSIG record, then this is a TIME error. This is an indication that the client and server clocks are not synchronized. In this case the client SHOULD log the event. DNS resolvers MUST NOT adjust any clocks in the client based on BADTIME errors, but the server's time in the other data field SHOULD be logged.Vixie, et al. Standards Track [Page 10]RFC 2845 DNS TSIG May 2000
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -