⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 swsusp.c.bak

📁 电源管理代码 基于linux2.6.10!apm方式的电源管理!很好的资料!做arm平台使用
💻 BAK
📖 第 1 页 / 共 2 页
字号:
	free_pages(p, pagedir_order);}/** *	calc_order - Determine the order of allocation needed for pagedir_save. * *	This looks tricky, but is just subtle. Please fix it some time. *	Since there are %nr_copy_pages worth of pages in the snapshot, we need *	to allocate enough contiguous space to hold  *		(%nr_copy_pages * sizeof(struct pbe)),  *	which has the saved/orig locations of the page..  * *	SUSPEND_PD_PAGES() tells us how many pages we need to hold those  *	structures, then we call get_bitmask_order(), which will tell us the *	last bit set in the number, starting with 1. (If we need 30 pages, that *	is 0x0000001e in hex. The last bit is the 5th, which is the order we  *	would use to allocate 32 contiguous pages). * *	Since we also need to save those pages, we add the number of pages that *	we need to nr_copy_pages, and in case of an overflow, do the  *	calculation again to update the number of pages needed.  * *	With this model, we will tend to waste a lot of memory if we just cross *	an order boundary. Plus, the higher the order of allocation that we try *	to do, the more likely we are to fail in a low-memory situtation  *	(though	we're unlikely to get this far in such a case, since swsusp  *	requires half of memory to be free anyway). */static void calc_order(void){	int diff = 0;	int order = 0;	do {		diff = get_bitmask_order(SUSPEND_PD_PAGES(nr_copy_pages)) - order;		if (diff) {			order += diff;			nr_copy_pages += 1 << diff;		}	} while(diff);	pagedir_order = order;}/** *	alloc_pagedir - Allocate the page directory. * *	First, determine exactly how many contiguous pages we need and *	allocate them. */static int alloc_pagedir(void){	calc_order();	pagedir_save = (suspend_pagedir_t *)__get_free_pages(GFP_ATOMIC | __GFP_COLD,							     pagedir_order);	if (!pagedir_save)		return -ENOMEM;	memset(pagedir_save, 0, (1 << pagedir_order) * PAGE_SIZE);	pagedir_nosave = pagedir_save;	return 0;}/** *	alloc_image_pages - Allocate pages for the snapshot. * */static int alloc_image_pages(void){	struct pbe * p;	int i;	for (i = 0, p = pagedir_save; i < nr_copy_pages; i++, p++) {		p->address = get_zeroed_page(GFP_ATOMIC | __GFP_COLD);		if(!p->address)			goto Error;		SetPageNosave(virt_to_page(p->address));	}	return 0; Error:	do { 		if (p->address)			free_page(p->address);		p->address = 0;	} while (p-- > pagedir_save);	return -ENOMEM;}/** *	enough_free_mem - Make sure we enough free memory to snapshot. * *	Returns TRUE or FALSE after checking the number of available  *	free pages. */static int enough_free_mem(void){	if (nr_free_pages() < (nr_copy_pages + PAGES_FOR_IO)) {		pr_debug("swsusp: Not enough free pages: Have %d\n",			 nr_free_pages());		return 0;	}	return 1;}/** *	enough_swap - Make sure we have enough swap to save the image. * *	Returns TRUE or FALSE after checking the total amount of swap  *	space avaiable. * *	FIXME: si_swapinfo(&i) returns all swap devices information. *	We should only consider resume_device.  */static int enough_swap(void){	struct sysinfo i;	si_swapinfo(&i);	if (i.freeswap < (nr_copy_pages + PAGES_FOR_IO))  {		pr_debug("swsusp: Not enough swap. Need %ld\n",i.freeswap);		return 0;	}	return 1;}static int swsusp_alloc(void){	int error;	pr_debug("suspend: (pages needed: %d + %d free: %d)\n",		 nr_copy_pages, PAGES_FOR_IO, nr_free_pages());	pagedir_nosave = NULL;	if (!enough_free_mem())		return -ENOMEM;	if (!enough_swap())		return -ENOSPC;	if ((error = alloc_pagedir())) {		pr_debug("suspend: Allocating pagedir failed.\n");		return error;	}	if ((error = alloc_image_pages())) {		pr_debug("suspend: Allocating image pages failed.\n");		swsusp_free();		return error;	}	nr_copy_pages_check = nr_copy_pages;	pagedir_order_check = pagedir_order;	return 0;}int suspend_prepare_image(void){	unsigned int nr_needed_pages;	int error;	pr_debug("swsusp: critical section: \n");	if (save_highmem()) {		printk(KERN_CRIT "Suspend machine: Not enough free pages for highmem\n");		restore_highmem();		return -ENOMEM;	}	drain_local_pages();	count_data_pages();	printk("swsusp: Need to copy %u pages\n",nr_copy_pages);	nr_needed_pages = nr_copy_pages + PAGES_FOR_IO;	error = swsusp_alloc();	if (error)		return error;		/* During allocating of suspend pagedir, new cold pages may appear. 	 * Kill them.	 */	drain_local_pages();	copy_data_pages();	/*	 * End of critical section. From now on, we can write to memory,	 * but we should not touch disk. This specially means we must _not_	 * touch swap space! Except we must write out our image of course.	 */	printk("swsusp: critical section/: done (%d pages copied)\n", nr_copy_pages );	return 0;}/* It is important _NOT_ to umount filesystems at this point. We want * them synced (in case something goes wrong) but we DO not want to mark * filesystem clean: it is not. (And it does not matter, if we resume * correctly, we'll mark system clean, anyway.) */int swsusp_write(void){	int error;	device_resume();	lock_swapdevices();	error = write_suspend_image();	/* This will unlock ignored swap devices since writing is finished */	lock_swapdevices();	return error;}extern asmlinkage int swsusp_arch_suspend(void);extern asmlinkage int swsusp_arch_resume(void);asmlinkage int swsusp_save(void){	int error = 0;	if ((error = swsusp_swap_check())) {		printk(KERN_ERR "swsusp: FATAL: cannot find swap device, try "				"swapon -a!\n");		return error;	}	return suspend_prepare_image();}int swsusp_suspend(void){	int error;//	if ((error = arch_prepare_suspend()))		return error;	local_irq_disable();	save_processor_state();	error = swsusp_arch_suspend();	/* Restore control flow magically appears here */	restore_processor_state();	restore_highmem();	local_irq_enable();	return error;}asmlinkage int swsusp_restore(void){	BUG_ON (nr_copy_pages_check != nr_copy_pages);	BUG_ON (pagedir_order_check != pagedir_order);		/* Even mappings of "global" things (vmalloc) need to be fixed *///	__flush_tlb_global();	return 0;}int swsusp_resume(void){	int error;	local_irq_disable();	/* We'll ignore saved state, but this gets preempt count (etc) right *///	save_processor_state();	error = swsusp_arch_resume();	/* Code below is only ever reached in case of failure. Otherwise	 * execution continues at place where swsusp_arch_suspend was called         */	BUG_ON(!error);//	restore_processor_state();	restore_highmem();	local_irq_enable();	return error;}/* More restore stuff */#define does_collide(addr) does_collide_order(pagedir_nosave, addr, 0)/* * Returns true if given address/order collides with any orig_address  */static int __init does_collide_order(suspend_pagedir_t *pagedir, unsigned long addr,		int order){	int i;	unsigned long addre = addr + (PAGE_SIZE<<order);		for (i=0; i < nr_copy_pages; i++)		if ((pagedir+i)->orig_address >= addr &&			(pagedir+i)->orig_address < addre)			return 1;	return 0;}/* * We check here that pagedir & pages it points to won't collide with pages * where we're going to restore from the loaded pages later */static int __init check_pagedir(void){	int i;	for(i=0; i < nr_copy_pages; i++) {		unsigned long addr;		do {			addr = get_zeroed_page(GFP_ATOMIC);			if(!addr)				return -ENOMEM;		} while (does_collide(addr));		(pagedir_nosave+i)->address = addr;	}	return 0;}static int __init swsusp_pagedir_relocate(void){	/*	 * We have to avoid recursion (not to overflow kernel stack),	 * and that's why code looks pretty cryptic 	 */	suspend_pagedir_t *old_pagedir = pagedir_nosave;	void **eaten_memory = NULL;	void **c = eaten_memory, *m, *f;	int ret = 0;	printk("Relocating pagedir ");	if (!does_collide_order(old_pagedir, (unsigned long)old_pagedir, pagedir_order)) {		printk("not necessary\n");		return check_pagedir();	}	while ((m = (void *) __get_free_pages(GFP_ATOMIC, pagedir_order)) != NULL) {		if (!does_collide_order(old_pagedir, (unsigned long)m, pagedir_order))			break;		eaten_memory = m;		printk( "." ); 		*eaten_memory = c;		c = eaten_memory;	}	if (!m) {		printk("out of memory\n");		ret = -ENOMEM;	} else {		pagedir_nosave =			memcpy(m, old_pagedir, PAGE_SIZE << pagedir_order);	}	c = eaten_memory;	while (c) {		printk(":");		f = c;		c = *c;		free_pages((unsigned long)f, pagedir_order);	}	if (ret)		return ret;	printk("|\n");	return check_pagedir();}/** *	Using bio to read from swap. *	This code requires a bit more work than just using buffer heads *	but, it is the recommended way for 2.5/2.6. *	The following are to signal the beginning and end of I/O. Bios *	finish asynchronously, while we want them to happen synchronously. *	A simple atomic_t, and a wait loop take care of this problem. */static atomic_t io_done = ATOMIC_INIT(0);static void start_io(void){	atomic_set(&io_done,1);}static int end_io(struct bio * bio, unsigned int num, int err){	atomic_set(&io_done,0);	return 0;}static void wait_io(void){	while(atomic_read(&io_done))		io_schedule();}static struct block_device * resume_bdev;/** *	submit - submit BIO request. *	@rw:	READ or WRITE. *	@off	physical offset of page. *	@page:	page we're reading or writing. * *	Straight from the textbook - allocate and initialize the bio. *	If we're writing, make sure the page is marked as dirty. *	Then submit it and wait. */static int submit(int rw, pgoff_t page_off, void * page){	int error = 0;	struct bio * bio;	bio = bio_alloc(GFP_ATOMIC, 1);	if (!bio)		return -ENOMEM;	bio->bi_sector = page_off * (PAGE_SIZE >> 9);	bio_get(bio);	bio->bi_bdev = resume_bdev;	bio->bi_end_io = end_io;	if (bio_add_page(bio, virt_to_page(page), PAGE_SIZE, 0) < PAGE_SIZE) {		printk("swsusp: ERROR: adding page to bio at %ld\n",page_off);		error = -EFAULT;		goto Done;	}	if (rw == WRITE)		bio_set_pages_dirty(bio);	start_io();	submit_bio(rw | (1 << BIO_RW_SYNC), bio);	wait_io(); Done:	bio_put(bio);	return error;}int bio_read_page(pgoff_t page_off, void * page){	return submit(READ, page_off, page);}int bio_write_page(pgoff_t page_off, void * page){	return submit(WRITE, page_off, page);}/* * Sanity check if this image makes sense with this kernel/swap context * I really don't think that it's foolproof but more than nothing.. */static const char * __init sanity_check(void){	dump_info();	if(swsusp_info.version_code != LINUX_VERSION_CODE)		return "kernel version";	if(swsusp_info.num_physpages != num_physpages)		return "memory size";	if (strcmp(swsusp_info.uts.sysname,system_utsname.sysname))		return "system type";	if (strcmp(swsusp_info.uts.release,system_utsname.release))		return "kernel release";	if (strcmp(swsusp_info.uts.version,system_utsname.version))		return "version";	if (strcmp(swsusp_info.uts.machine,system_utsname.machine))		return "machine";	if(swsusp_info.cpus != num_online_cpus())		return "number of cpus";	return NULL;}static int __init check_header(void){	const char * reason = NULL;	int error;	if ((error = bio_read_page(swp_offset(swsusp_header.swsusp_info), &swsusp_info)))		return error; 	/* Is this same machine? */	if ((reason = sanity_check())) {		printk(KERN_ERR "swsusp: Resume mismatch: %s\n",reason);		return -EPERM;	}	nr_copy_pages = swsusp_info.image_pages;	return error;}static int __init check_sig(void){	int error;	memset(&swsusp_header, 0, sizeof(swsusp_header));	if ((error = bio_read_page(0, &swsusp_header)))		return error;	if (!memcmp(SWSUSP_SIG, swsusp_header.sig, 10)) {		memcpy(swsusp_header.sig, swsusp_header.orig_sig, 10);		/*		 * Reset swap signature now.		 */		error = bio_write_page(0, &swsusp_header);	} else { 		pr_debug(KERN_ERR "swsusp: Suspend partition has wrong signature?\n");		return -EINVAL;	}	if (!error)		pr_debug("swsusp: Signature found, resuming\n");	return error;}/** *	swsusp_read_data - Read image pages from swap. * *	You do not need to check for overlaps, check_pagedir() *	already did that. */static int __init data_read(void){	struct pbe * p;	int error;	int i;	int mod = nr_copy_pages / 100;	if (!mod)		mod = 1;	if ((error = swsusp_pagedir_relocate()))		return error;	printk( "Reading image data (%d pages):     ", nr_copy_pages );	for(i = 0, p = pagedir_nosave; i < nr_copy_pages && !error; i++, p++) {		if (!(i%mod))			printk( "\b\b\b\b%3d%%", i / mod );		error = bio_read_page(swp_offset(p->swap_address),				  (void *)p->address);	}	printk(" %d done.\n",i);	return error;}extern dev_t __init name_to_dev_t(const char *line);static int __init read_pagedir(void){	unsigned long addr;	int i, n = swsusp_info.pagedir_pages;	int error = 0;	pagedir_order = get_bitmask_order(n);	addr =__get_free_pages(GFP_ATOMIC, pagedir_order);	if (!addr)		return -ENOMEM;	pagedir_nosave = (struct pbe *)addr;	pr_debug("pmdisk: Reading pagedir (%d Pages)\n",n);	for (i = 0; i < n && !error; i++, addr += PAGE_SIZE) {		unsigned long offset = swp_offset(swsusp_info.pagedir[i]);		if (offset)			error = bio_read_page(offset, (void *)addr);		else			error = -EFAULT;	}	if (error)		free_pages((unsigned long)pagedir_nosave, pagedir_order);	return error;}static int __init read_suspend_image(void){	int error = 0;	if ((error = check_sig()))		return error;	if ((error = check_header()))		return error;	if ((error = read_pagedir()))		return error;	if ((error = data_read()))		free_pages((unsigned long)pagedir_nosave, pagedir_order);	return error;}/** *	pmdisk_read - Read saved image from swap. */int __init swsusp_read(void){	int error;	if (!strlen(resume_file))		return -ENOENT;	resume_device = name_to_dev_t(resume_file);	pr_debug("swsusp: Resume From Partition: %s\n", resume_file);	resume_bdev = open_by_devnum(resume_device, FMODE_READ);	if (!IS_ERR(resume_bdev)) {		set_blocksize(resume_bdev, PAGE_SIZE);		error = read_suspend_image();		blkdev_put(resume_bdev);	} else		error = PTR_ERR(resume_bdev);	if (!error)		pr_debug("Reading resume file was successful\n");	else		pr_debug("pmdisk: Error %d resuming\n", error);	return error;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -