📄 fdtd_3d_lorentz.cpp
字号:
Nr_Lorentz = (long) Mat[Ind[i][j][k]][0];
Sum_S = 0;
for (kk = 0; kk < Nr_Lorentz; kk++)
{
Sum_S = Sum_S + Sy[i][j][k][kk];
}
Ey[i][j][k] = (Dy[i][j][k] - eps_0*Sum_S)/(eps_0*Mat[Ind[i][j][k]][1]);
for (kk = 0; kk < Nr_Lorentz; kk++)
{
Sy_r = Sy[i][j][k][kk];
Sy[i][j][k][kk] = K_a[Ind[i][j][k]][kk] * Sy_r +
K_b[Ind[i][j][k]][kk] * Sy_2[i][j][k][kk] +
K_c[Ind[i][j][k]][kk] * Ey[i][j][k];
Sy_2[i][j][k][kk] = Sy_r;
}
}
}
i = 0;
#pragma omp for schedule(dynamic,nr_threads) nowait
for (j = 0; j < nly; j++)
{
for (k = 1; k < nlz; k++)
{
Gy_r = Gy[i][j][k];
Gy[i][j][k] = K_Gy_a[k]*Gy[i][j][k] +
K_Gy_b[k]*( (Hx[i][j][k] - Hx[i][j][k-1])*inv_dz -
(Hz[i][j][k] - Hz_recv_i[j][k])*inv_dx );
//Total field scattered field formulation
if (jel_plane_wave == 1 && jel_TS == 1)
{
//i0 face
if(jel_TS_planes[0] == 1)
TS_Gy_i0(i,j,k);
//i1 face
if(jel_TS_planes[1] == 1)
TS_Gy_i1(i,j,k);
//k0 face
if(jel_TS_planes[4] == 1)
TS_Gy_k0(i,j,k);
//k1 face
if(jel_TS_planes[5] == 1)
TS_Gy_k1(i,j,k);
}
Dy[i][j][k] = K_Dy_a[i]*(K_Dy_b[i]*Dy[i][j][k] +
K_Dy_c[j]*Gy[i][j][k] + K_Dy_d[j]*Gy_r);
Nr_Lorentz = (long) Mat[Ind[i][j][k]][0];
Sum_S = 0;
for (kk = 0; kk < Nr_Lorentz; kk++)
{
Sum_S = Sum_S + Sy[i][j][k][kk];
}
Ey[i][j][k] = (Dy[i][j][k] - eps_0*Sum_S)/(eps_0*Mat[Ind[i][j][k]][1]);
for (kk = 0; kk < Nr_Lorentz; kk++)
{
Sy_r = Sy[i][j][k][kk];
Sy[i][j][k][kk] = K_a[Ind[i][j][k]][kk] * Sy_r +
K_b[Ind[i][j][k]][kk] * Sy_2[i][j][k][kk] +
K_c[Ind[i][j][k]][kk] * Ey[i][j][k];
Sy_2[i][j][k][kk] = Sy_r;
}
}
}
#pragma omp for schedule(dynamic,nr_threads)
for (i = 1; i < nlx; i++)
{
for (j = 0; j < nly; j++)
{
for (k = 1; k < nlz; k++)
{
Gy_r = Gy[i][j][k];
Gy[i][j][k] = K_Gy_a[k]*Gy[i][j][k] +
K_Gy_b[k]*( (Hx[i][j][k] - Hx[i][j][k-1])*inv_dz -
(Hz[i][j][k] - Hz[i-1][j][k])*inv_dx );
//Total field scattered field formulation
if (jel_plane_wave == 1 && jel_TS == 1)
{
//i0 face
if(jel_TS_planes[0] == 1)
TS_Gy_i0(i,j,k);
//i1 face
if(jel_TS_planes[1] == 1)
TS_Gy_i1(i,j,k);
//k0 face
if(jel_TS_planes[4] == 1)
TS_Gy_k0(i,j,k);
//k1 face
if(jel_TS_planes[5] == 1)
TS_Gy_k1(i,j,k);
}
Dy[i][j][k] = K_Dy_a[i]*(K_Dy_b[i]*Dy[i][j][k] +
K_Dy_c[j]*Gy[i][j][k] + K_Dy_d[j]*Gy_r);
Nr_Lorentz = (long) Mat[Ind[i][j][k]][0];
Sum_S = 0;
for (kk = 0; kk < Nr_Lorentz; kk++)
{
Sum_S = Sum_S + Sy[i][j][k][kk];
}
Ey[i][j][k] = (Dy[i][j][k] - eps_0*Sum_S)/(eps_0*Mat[Ind[i][j][k]][1]);
for (kk = 0; kk < Nr_Lorentz; kk++)
{
Sy_r = Sy[i][j][k][kk];
Sy[i][j][k][kk] = K_a[Ind[i][j][k]][kk] * Sy_r +
K_b[Ind[i][j][k]][kk] * Sy_2[i][j][k][kk] +
K_c[Ind[i][j][k]][kk] * Ey[i][j][k];
Sy_2[i][j][k][kk] = Sy_r;
}
}
}
}
}
////////////////////////////////////////////////////////////////////
//Point source
////////////////////////////////////////////////////////////////////
if (jel_plane_wave == 0 && pt_source_Ey == 1 && n_Coord_ptSource>0 && iter <= switch_off_time)
{
PtSource_J(Ey, time);
}
}
///////////////////////////////////////////////////////////////////////////////
//Update the Ey field components which will be send to other processes
///////////////////////////////////////////////////////////////////////////////
void CFDTD_3D_LORENTZ::Update_Ey_send()
{
long i, j, k;
//update Ey_send_i
for (j = 0; j < nly_Ey; j++)
{
for (k = 0; k < nlz_Ey; k++)
{
Ey_send_i[j][k] = Ey[0][j][k];
}
}
//update Ey_send_k
for (i = 0; i < nlx_Ey; i++)
{
for (j = 0; j < nly_Ey; j++)
{
Ey_send_k[i][j] = Ey[i][j][0];
}
}
}
///////////////////////////////////////////////////////////////////////////////////////
//Calculate the Ez field
///////////////////////////////////////////////////////////////////////////////////////
void CFDTD_3D_LORENTZ::Calc_Ez(long nlx, long nly, long nlz)
{
long i, j, k, kk, Nr_Lorentz;
double Gz_r, Sz_r, Sum_S;
double eps_0;
if (myrank_i == iprocs-1)
{
nlx--;
}
if (myrank_j == jprocs-1)
{
nly--;
}
#pragma omp parallel default(shared) private(i,j,k,kk,Gz_r,Sz_r,Nr_Lorentz,Sum_S,eps_0)
{
eps_0 = 8.8541878176203898505365630317107502606083701665994498081024171524053950954599821142852891607182008932e-12; // [F/m]
i = 0;
j = 0;
#pragma omp for schedule(dynamic,nr_threads) nowait
for (k = 0; k < nlz; k++)
{
Gz_r = Gz[i][j][k];
Gz[i][j][k] = K_Gz_a[i]*Gz[i][j][k] +
K_Gz_b[i]*( (Hy[i][j][k] - Hy_recv_i[j][k])*inv_dx -
(Hx[i][j][k] - Hx_recv_j[i][k])*inv_dy );
//Total field scattered field formulation
if (jel_plane_wave == 1 && jel_TS == 1)
{
//i0 face
if(jel_TS_planes[0] == 1)
TS_Gz_i0(i,j,k);
//i1 face
if(jel_TS_planes[1] == 1)
TS_Gz_i1(i,j,k);
//j0 face
if(jel_TS_planes[2] == 1)
TS_Gz_j0(i,j,k);
//j1 face
if(jel_TS_planes[3] == 1)
TS_Gz_j1(i,j,k);
}
Dz[i][j][k] = K_Dz_a[j]*(K_Dz_b[j]*Dz[i][j][k] +
K_Dz_c[k]*Gz[i][j][k] + K_Dz_d[k]*Gz_r);
Nr_Lorentz = (long) Mat[Ind[i][j][k]][0];
Sum_S = 0;
for (kk = 0; kk < Nr_Lorentz; kk++)
{
Sum_S = Sum_S + Sz[i][j][k][kk];
}
Ez[i][j][k] = (Dz[i][j][k] - eps_0*Sum_S)/(eps_0*Mat[Ind[i][j][k]][1]);
for (kk = 0; kk < Nr_Lorentz; kk++)
{
Sz_r = Sz[i][j][k][kk];
Sz[i][j][k][kk] = K_a[Ind[i][j][k]][kk] * Sz_r +
K_b[Ind[i][j][k]][kk] * Sz_2[i][j][k][kk] +
K_c[Ind[i][j][k]][kk] * Ez[i][j][k];
Sz_2[i][j][k][kk] = Sz_r;
}
}
i = 0;
#pragma omp for schedule(dynamic,nr_threads) nowait
for (j = 1; j < nly; j++)
{
for (k = 0; k < nlz; k++)
{
Gz_r = Gz[i][j][k];
Gz[i][j][k] = K_Gz_a[i]*Gz[i][j][k] +
K_Gz_b[i]*( (Hy[i][j][k] - Hy_recv_i[j][k])*inv_dx -
(Hx[i][j][k] - Hx[i][j-1][k])*inv_dy );
//Total field scattered field formulation
if (jel_plane_wave == 1 && jel_TS == 1)
{
//i0 face
if(jel_TS_planes[0] == 1)
TS_Gz_i0(i,j,k);
//i1 face
if(jel_TS_planes[1] == 1)
TS_Gz_i1(i,j,k);
//j0 face
if(jel_TS_planes[2] == 1)
TS_Gz_j0(i,j,k);
//j1 face
if(jel_TS_planes[3] == 1)
TS_Gz_j1(i,j,k);
}
Dz[i][j][k] = K_Dz_a[j]*(K_Dz_b[j]*Dz[i][j][k] +
K_Dz_c[k]*Gz[i][j][k] + K_Dz_d[k]*Gz_r);
Nr_Lorentz = (long) Mat[Ind[i][j][k]][0];
Sum_S = 0;
for (kk = 0; kk < Nr_Lorentz; kk++)
{
Sum_S = Sum_S + Sz[i][j][k][kk];
}
Ez[i][j][k] = (Dz[i][j][k] - eps_0*Sum_S)/(eps_0*Mat[Ind[i][j][k]][1]);
for (kk = 0; kk < Nr_Lorentz; kk++)
{
Sz_r = Sz[i][j][k][kk];
Sz[i][j][k][kk] = K_a[Ind[i][j][k]][kk] * Sz_r +
K_b[Ind[i][j][k]][kk] * Sz_2[i][j][k][kk] +
K_c[Ind[i][j][k]][kk] * Ez[i][j][k];
Sz_2[i][j][k][kk] = Sz_r;
}
}
}
j = 0;
#pragma omp for schedule(dynamic,nr_threads) nowait
for (i = 1; i < nlx; i++)
{
for (k = 0; k < nlz; k++)
{
Gz_r = Gz[i][j][k];
Gz[i][j][k] = K_Gz_a[i]*Gz[i][j][k] +
K_Gz_b[i]*( (Hy[i][j][k] - Hy[i-1][j][k])*inv_dx -
(Hx[i][j][k] - Hx_recv_j[i][k])*inv_dy );
//Total field scattered field formulation
if (jel_plane_wave == 1 && jel_TS == 1)
{
//i0 face
if(jel_TS_planes[0] == 1)
TS_Gz_i0(i,j,k);
//i1 face
if(jel_TS_planes[1] == 1)
TS_Gz_i1(i,j,k);
//j0 face
if(jel_TS_planes[2] == 1)
TS_Gz_j0(i,j,k);
//j1 face
if(jel_TS_planes[3] == 1)
TS_Gz_j1(i,j,k);
}
Dz[i][j][k] = K_Dz_a[j]*(K_Dz_b[j]*Dz[i][j][k] +
K_Dz_c[k]*Gz[i][j][k] + K_Dz_d[k]*Gz_r);
Nr_Lorentz = (long) Mat[Ind[i][j][k]][0];
Sum_S = 0;
for (kk = 0; kk < Nr_Lorentz; kk++)
{
Sum_S = Sum_S + Sz[i][j][k][kk];
}
Ez[i][j][k] = (Dz[i][j][k] - eps_0*Sum_S)/(eps_0*Mat[Ind[i][j][k]][1]);
for (kk = 0; kk < Nr_Lorentz; kk++)
{
Sz_r = Sz[i][j][k][kk];
Sz[i][j][k][kk] = K_a[Ind[i][j][k]][kk] * Sz_r +
K_b[Ind[i][j][k]][kk] * Sz_2[i][j][k][kk] +
K_c[Ind[i][j][k]][kk] * Ez[i][j][k];
Sz_2[i][j][k][kk] = Sz_r;
}
}
}
#pragma omp for schedule(dynamic,nr_threads)
for (i = 1; i < nlx; i++)
{
for (j = 1; j < nly; j++)
{
for (k = 0; k < nlz; k++)
{
Gz_r = Gz[i][j][k];
Gz[i][j][k] = K_Gz_a[i]*Gz[i][j][k] +
K_Gz_b[i]*( (Hy[i][j][k] - Hy[i-1][j][k])*inv_dx -
(Hx[i][j][k] - Hx[i][j-1][k])*inv_dy );
//Total field scattered field formulation
if (jel_plane_wave == 1 && jel_TS == 1)
{
//i0 face
if(jel_TS_planes[0] == 1)
TS_Gz_i0(i,j,k);
//i1 face
if(jel_TS_planes[1] == 1)
TS_Gz_i1(i,j,k);
//j0 face
if(jel_TS_planes[2] == 1)
TS_Gz_j0(i,j,k);
//j1 face
if(jel_TS_planes[3] == 1)
TS_Gz_j1(i,j,k);
}
Dz[i][j][k] = K_Dz_a[j]*(K_Dz_b[j]*Dz[i][j][k] +
K_Dz_c[k]*Gz[i][j][k] + K_Dz_d[k]*Gz_r);
Nr_Lorentz = (long) Mat[Ind[i][j][k]][0];
Sum_S = 0;
for (kk = 0; kk < Nr_Lorentz; kk++)
{
Sum_S = Sum_S + Sz[i][j][k][kk];
}
Ez[i][j][k] = (Dz[i][j][k] - eps_0*Sum_S)/(eps_0*Mat[Ind[i][j][k]][1]);
for (kk = 0; kk < Nr_Lorentz; kk++)
{
Sz_r = Sz[i][j][k][kk];
Sz[i][j][k][kk] = K_a[Ind[i][j][k]][kk] * Sz_r +
K_b[Ind[i][j][k]][kk] * Sz_2[i][j][k][kk] +
K_c[Ind[i][j][k]][kk] * Ez[i][j][k];
Sz_2[i][j][k][kk] = Sz_r;
}
}
}
}
}
////////////////////////////////////////////////////////////////////
//Point source
////////////////////////////////////////////////////////////////////
if (jel_plane_wave == 0 && pt_source_Ez == 1 && n_Coord_ptSource>0)
{
if (iter <= switch_off_time)
{
PtSource_J(Ez, time);
}
}
}
///////////////////////////////////////////////////////////////////////////////
//Update the Ez field components which will be send to other processes
///////////////////////////////////////////////////////////////////////////////
void CFDTD_3D_LORENTZ::Update_Ez_send()
{
long i, j, k;
//update Ez_send_i
for (j = 0; j < nly_Ez; j++)
{
for (k = 0; k < nlz_Ez; k++)
{
Ez_send_i[j][k] = Ez[0][j][k];
}
}
//update Ez_send_j
for (i = 0; i < nlx_Ez; i++)
{
for (k = 0; k < nlz_Ez; k++)
{
Ez_send_j[i][k] = Ez[i][0][k];
}
}
}
///////////////////////////////////////////////////////////////////////////////////////
//Calculate the Hx field
///////////////////////////////////////////////////////////////////////////////////////
void CFDTD_3D_LORENTZ::Calc_Hx(long nlx, long nly, long nlz)
{
long i, j, k;
double Bx_r;
long nlyMIN1 = nly - 1;
long nlzMIN1 = nlz - 1;
#pragma omp parallel default(shared) private(i,j,k,Bx_r)
{
j = nlyMIN1;
k = nlzMIN1;
if ( nly > 0 && nlz >0 )
{
#pragma omp for schedule(dynamic,nr_threads) nowait
for (i = 0; i < nlx; i++)
{
Bx_r = Bx[i][j][k];
Bx[i][j][k] = K_Bx_a[j]*Bx[i][j][k] +
K_Bx_b[j]*( (Ey_recv_k[i][j] - Ey[i][j][k])*inv_dz -
(Ez_recv_j[i][k] - Ez[i][j][k])*inv_dy);
Hx[i][j][k] = K_Hx_a[k]*Hx[i][j][k] +
K_Hx_b[k]*( K_Hx_c[i]*Bx[i][j][k] +
K_Hx_d[i]*Bx_r )/mu_r[Ind[i][j][k]];
}
}
k = nlzMIN1;
if ( nlz > 0 )
{
#pragma omp for schedule(dynamic,nr_threads) nowait
for (i = 0; i < nlx; i++)
{
for (j = 0; j < nlyMIN1; j++)
{
Bx_r = Bx[i][j][k];
Bx[i][j][k] = K_Bx_a[j]*Bx[i][j][k] +
K_Bx_b[j]*( (Ey_recv_k[i][j] - Ey[i][j][k])*inv_dz -
(Ez[i][j+1][k] - Ez[i][j][k])*inv_dy);
Hx[i][j][k] = K_Hx_a[k]*Hx[i][j][k] +
K_Hx_b[k]*( K_Hx_c[i]*Bx[i][j][k] +
K_Hx_d[i]*Bx_r )/mu_r[Ind[i][j][k]];
}
}
}
j = nlyMIN1;
if ( nly > 0 )
{
#pragma omp for schedule(dynamic,nr_threads) nowait
for (i = 0; i < nlx; i++)
{
for (k = 0; k < nlzMIN1; k++)
{
Bx_r = Bx[i][j][k];
Bx[i][j][k] = K_Bx_a[j]*Bx[i][j][k] +
K_Bx_b[j]*( (Ey[i][j][k+1] - Ey[i][j][k])*inv_dz -
(Ez_recv_j[i][k] - Ez[i][j][k])*inv_dy);
Hx[i][j][k] = K_Hx_a[k]*Hx[i][j][k] +
K_Hx_b[k]*( K_Hx_c[i]*Bx[i][j][k] +
K_Hx_d[i]*Bx_r )/mu_r[Ind
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -