📄 fdtd_3d_lorentz.cpp
字号:
jel1 = 1;
}
if ( (ksta <= nz - nPML_z_2) && (kend > nz - nPML_z_2) )
{
n1 = ( nz - kend - 1);
n2 = nPML_z_2-1;
jel2 = 1;
}
if ( ksta > nz - nPML_z_2)
{
n1 = 0;
n2 = nlz-1;
jel2 = 1;
}
long cik = 0;
for (k = n1; k <= n2; k++)
{
//k
if (jel1 == 1)
{
sigma_z = sigma_max_1*pow( (nPML_z_1 - k)/((double) nPML_z_1) ,exponent);
ka_z = 1.0 + (ka_max - 1.0)*pow( (nPML_z_1 - k)/((double) nPML_z_1) ,exponent);
kk = cik;
K_Dx_a[kk] = 1/(2.0*eps_0*ka_z + sigma_z*dt);
K_Dx_b[kk] = 2.0*eps_0*ka_z - sigma_z*dt;
K_Gy_a[kk] = (2.0*eps_0*ka_z - sigma_z*dt)/(2.0*eps_0*ka_z + sigma_z*dt);
K_Gy_b[kk] = 2.0*eps_0*dt/(2.0*eps_0*ka_z + sigma_z*dt);
K_Hz_c[kk] = (2.0*eps_0*ka_z + sigma_z*dt)/mu_0;
K_Hz_d[kk] = -(2.0*eps_0*ka_z - sigma_z*dt)/mu_0;
}
if (jel2 == 1)
{
sigma_z = sigma_max_2*pow( (nPML_z_2 - k)/((double) nPML_z_2) ,exponent);
ka_z = 1.0 + (ka_max - 1.0)*pow( (nPML_z_2 - k)/((double) nPML_z_2) ,exponent);
kk = nlz - cik - 1;
K_Dx_a[kk] = 1/(2.0*eps_0*ka_z + sigma_z*dt);
K_Dx_b[kk] = 2.0*eps_0*ka_z - sigma_z*dt;
K_Gy_a[kk] = (2.0*eps_0*ka_z - sigma_z*dt)/(2.0*eps_0*ka_z + sigma_z*dt);
K_Gy_b[kk] = 2.0*eps_0*dt/(2.0*eps_0*ka_z + sigma_z*dt);
K_Hz_c[kk] = (2.0*eps_0*ka_z + sigma_z*dt)/mu_0;
K_Hz_d[kk] = -(2.0*eps_0*ka_z - sigma_z*dt)/mu_0;
}
//k+0.5
if (jel1 == 1)
{
sigma_z = sigma_max_1*pow( (nPML_z_1 - k - 0.5)/nPML_z_1 ,exponent);
ka_z = 1.0 + (ka_max - 1.0)*pow( (nPML_z_1 - k - 0.5)/nPML_z_1 ,exponent);
kk = cik;
K_Dz_c[kk] = 2.0*eps_0*ka_z + sigma_z*dt;
K_Dz_d[kk] = -2.0*eps_0*ka_z + sigma_z*dt;
K_Hx_a[kk] = (2.0*eps_0*ka_z - sigma_z*dt)/(2.0*eps_0*ka_z + sigma_z*dt);
K_Hx_b[kk] = 1.0/(2.0*eps_0*ka_z + sigma_z*dt);
K_By_a[kk] = (2.0*eps_0*ka_z - sigma_z*dt)/(2.0*eps_0*ka_z + sigma_z*dt);
K_By_b[kk] = (2.0*eps_0*dt)/(2.0*eps_0*ka_z + sigma_z*dt);
}
if (jel2 == 1)
{
sigma_z = sigma_max_2*pow( (nPML_z_2 - k - 0.5)/nPML_z_2 ,exponent);
ka_z = 1.0 + (ka_max - 1.0)*pow( (nPML_z_2 - k - 0.5)/nPML_z_2 ,exponent);
kk = nlz - cik - 2;
if (kk >=0 )
{
K_Dz_c[kk] = 2.0*eps_0*ka_z + sigma_z*dt;
K_Dz_d[kk] = -2.0*eps_0*ka_z + sigma_z*dt;
K_Hx_a[kk] = (2.0*eps_0*ka_z - sigma_z*dt)/(2.0*eps_0*ka_z + sigma_z*dt);
K_Hx_b[kk] = 1.0/(2.0*eps_0*ka_z + sigma_z*dt);
K_By_a[kk] = (2.0*eps_0*ka_z - sigma_z*dt)/(2.0*eps_0*ka_z + sigma_z*dt);
K_By_b[kk] = (2.0*eps_0*dt)/(2.0*eps_0*ka_z + sigma_z*dt);
}
}
cik++;
}
if ( (kend < nz-1) && (kend >= nz - nPML_z_2 - 1) )
{
k = n1;
if (kk < 0)
{
k--;
}
sigma_z = sigma_max_2*pow( (nPML_z_2 - k - 0.5)/nPML_z_2 ,exponent);
ka_z = 1.0 + (ka_max - 1.0)*pow( (nPML_z_2 - k - 0.5)/nPML_z_2 ,exponent);
K_Dz_c[nlz-1] = 2.0*eps_0*ka_z + sigma_z*dt;
K_Dz_d[nlz-1] = -2.0*eps_0*ka_z + sigma_z*dt;
K_Hx_a[nlz-1] = (2.0*eps_0*ka_z - sigma_z*dt)/(2.0*eps_0*ka_z + sigma_z*dt);
K_Hx_b[nlz-1] = 1.0/(2.0*eps_0*ka_z + sigma_z*dt);
K_By_a[nlz-1] = (2.0*eps_0*ka_z - sigma_z*dt)/(2.0*eps_0*ka_z + sigma_z*dt);
K_By_b[nlz-1] = (2.0*eps_0*dt)/(2.0*eps_0*ka_z + sigma_z*dt);
}
return 0;
}
///////////////////////////////////////////////////////////////////////////////////////
//Calculate the Ex field
///////////////////////////////////////////////////////////////////////////////////////
void CFDTD_3D_LORENTZ::Calc_Ex(long nlx, long nly, long nlz)
{
long i, j, k, kk, Nr_Lorentz;
double Gx_r, Sx_r, Sum_S;
double eps_0;
if (myrank_j == jprocs-1)
{
nly--;
}
if (myrank_k == kprocs-1)
{
nlz--;
}
#pragma omp parallel default(shared) private(i,j,k,kk,Gx_r,Sx_r,Nr_Lorentz,Sum_S,eps_0)
{
eps_0 = 8.8541878176203898505365630317107502606083701665994498081024171524053950954599821142852891607182008932e-12; // [F/m]
j = 0;
k = 0;
#pragma omp for schedule(dynamic,nr_threads) nowait
for (i = 0; i < nlx; i++)
{
Gx_r = Gx[i][j][k];
Gx[i][j][k] = K_Gx_a[j]*Gx[i][j][k] +
K_Gx_b[j]*( (Hz[i][j][k] - Hz_recv_j[i][k])*inv_dy -
(Hy[i][j][k] - Hy_recv_k[i][j])*inv_dz );
//Total field scattered field formulation
if (jel_plane_wave == 1 && jel_TS == 1)
{
//j0 face
if(jel_TS_planes[2] == 1)
TS_Gx_j0(i,j,k);
//j1 face
if(jel_TS_planes[3] == 1)
TS_Gx_j1(i,j,k);
//k0 face
if(jel_TS_planes[4] == 1)
TS_Gx_k0(i,j,k);
//k1 face
if(jel_TS_planes[5] == 1)
TS_Gx_k1(i,j,k);
}
Dx[i][j][k] = K_Dx_a[k]*(K_Dx_b[k]*Dx[i][j][k] +
K_Dx_c[i]*Gx[i][j][k] + K_Dx_d[i]*Gx_r);
Nr_Lorentz = (long) Mat[Ind[i][j][k]][0];
Sum_S = 0;
for (kk = 0; kk < Nr_Lorentz; kk++)
{
Sum_S = Sum_S + Sx[i][j][k][kk];
}
Ex[i][j][k] = (Dx[i][j][k] - eps_0*Sum_S)/(eps_0*Mat[Ind[i][j][k]][1]);
for (kk = 0; kk < Nr_Lorentz; kk++)
{
Sx_r = Sx[i][j][k][kk];
Sx[i][j][k][kk] = K_a[Ind[i][j][k]][kk] * Sx_r +
K_b[Ind[i][j][k]][kk] * Sx_2[i][j][k][kk] +
K_c[Ind[i][j][k]][kk] * Ex[i][j][k];
Sx_2[i][j][k][kk] = Sx_r;
}
}
j = 0;
#pragma omp for schedule(dynamic,nr_threads) nowait
for (i = 0; i < nlx; i++)
{
for (k = 1; k < nlz; k++)
{
Gx_r = Gx[i][j][k];
Gx[i][j][k] = K_Gx_a[j]*Gx[i][j][k] +
K_Gx_b[j]*( (Hz[i][j][k] - Hz_recv_j[i][k])*inv_dy -
(Hy[i][j][k] - Hy[i][j][k-1])*inv_dz );
//Total field scattered field formulation
if (jel_plane_wave == 1 && jel_TS == 1)
{
//j0 face
if(jel_TS_planes[2] == 1)
TS_Gx_j0(i,j,k);
//j1 face
if(jel_TS_planes[3] == 1)
TS_Gx_j1(i,j,k);
//k0 face
if(jel_TS_planes[4] == 1)
TS_Gx_k0(i,j,k);
//k1 face
if(jel_TS_planes[5] == 1)
TS_Gx_k1(i,j,k);
}
Dx[i][j][k] = K_Dx_a[k]*(K_Dx_b[k]*Dx[i][j][k] +
K_Dx_c[i]*Gx[i][j][k] + K_Dx_d[i]*Gx_r);
Nr_Lorentz = (long) Mat[Ind[i][j][k]][0];
Sum_S = 0;
for (kk = 0; kk < Nr_Lorentz; kk++)
{
Sum_S = Sum_S + Sx[i][j][k][kk];
}
Ex[i][j][k] = (Dx[i][j][k] - eps_0*Sum_S)/(eps_0*Mat[Ind[i][j][k]][1]);
for (kk = 0; kk < Nr_Lorentz; kk++)
{
Sx_r = Sx[i][j][k][kk];
Sx[i][j][k][kk] = K_a[Ind[i][j][k]][kk] * Sx_r +
K_b[Ind[i][j][k]][kk] * Sx_2[i][j][k][kk] +
K_c[Ind[i][j][k]][kk] * Ex[i][j][k];
Sx_2[i][j][k][kk] = Sx_r;
}
}
}
k = 0;
#pragma omp for schedule(dynamic,nr_threads) nowait
for (i = 0; i < nlx; i++)
{
for (j = 1; j < nly; j++)
{
Gx_r = Gx[i][j][k];
Gx[i][j][k] = K_Gx_a[j]*Gx[i][j][k] +
K_Gx_b[j]*( (Hz[i][j][k] - Hz[i][j-1][k])*inv_dy -
(Hy[i][j][k] - Hy_recv_k[i][j])*inv_dz );
//Total field scattered field formulation
if (jel_plane_wave == 1 && jel_TS == 1)
{
//j0 face
if(jel_TS_planes[2] == 1)
TS_Gx_j0(i,j,k);
//j1 face
if(jel_TS_planes[3] == 1)
TS_Gx_j1(i,j,k);
//k0 face
if(jel_TS_planes[4] == 1)
TS_Gx_k0(i,j,k);
//k1 face
if(jel_TS_planes[5] == 1)
TS_Gx_k1(i,j,k);
}
Dx[i][j][k] = K_Dx_a[k]*(K_Dx_b[k]*Dx[i][j][k] +
K_Dx_c[i]*Gx[i][j][k] + K_Dx_d[i]*Gx_r);
Nr_Lorentz = (long) Mat[Ind[i][j][k]][0];
Sum_S = 0;
for (kk = 0; kk<Nr_Lorentz; kk++)
{
Sum_S = Sum_S + Sx[i][j][k][kk];
}
Ex[i][j][k] = (Dx[i][j][k] - eps_0*Sum_S)/(eps_0*Mat[Ind[i][j][k]][1]);
for (kk = 0; kk < Nr_Lorentz; kk++)
{
Sx_r = Sx[i][j][k][kk];
Sx[i][j][k][kk] = K_a[Ind[i][j][k]][kk] * Sx_r +
K_b[Ind[i][j][k]][kk] * Sx_2[i][j][k][kk] +
K_c[Ind[i][j][k]][kk] * Ex[i][j][k];
Sx_2[i][j][k][kk] = Sx_r;
}
}
}
#pragma omp for schedule(dynamic,nr_threads)
for (i = 0; i < nlx; i++)
{
for (j = 1; j < nly; j++)
{
for (k = 1; k < nlz; k++)
{
Gx_r = Gx[i][j][k];
Gx[i][j][k] = K_Gx_a[j]*Gx[i][j][k] +
K_Gx_b[j]*( (Hz[i][j][k] - Hz[i][j-1][k])*inv_dy -
(Hy[i][j][k] - Hy[i][j][k-1])*inv_dz );
//Total field scattered field formulation
if (jel_plane_wave == 1 && jel_TS == 1)
{
//j0 face
if(jel_TS_planes[2] == 1)
TS_Gx_j0(i,j,k);
//j1 face
if(jel_TS_planes[3] == 1)
TS_Gx_j1(i,j,k);
//k0 face
if(jel_TS_planes[4] == 1)
TS_Gx_k0(i,j,k);
//k1 face
if(jel_TS_planes[5] == 1)
TS_Gx_k1(i,j,k);
}
Dx[i][j][k] = K_Dx_a[k]*(K_Dx_b[k]*Dx[i][j][k] +
K_Dx_c[i]*Gx[i][j][k] + K_Dx_d[i]*Gx_r);
Nr_Lorentz = (long) Mat[Ind[i][j][k]][0];
Sum_S = 0;
for (kk = 0; kk < Nr_Lorentz; kk++)
{
Sum_S = Sum_S + Sx[i][j][k][kk];
}
Ex[i][j][k] = (Dx[i][j][k] - eps_0*Sum_S)/(eps_0*Mat[Ind[i][j][k]][1]);
for (kk = 0; kk < Nr_Lorentz; kk++)
{
Sx_r = Sx[i][j][k][kk];
Sx[i][j][k][kk] = K_a[Ind[i][j][k]][kk] * Sx_r +
K_b[Ind[i][j][k]][kk] * Sx_2[i][j][k][kk] +
K_c[Ind[i][j][k]][kk] * Ex[i][j][k];
Sx_2[i][j][k][kk] = Sx_r;
}
}
}
}
}
////////////////////////////////////////////////////////////////////
//Point source
////////////////////////////////////////////////////////////////////
if (jel_plane_wave == 0 && pt_source_Ex == 1 && n_Coord_ptSource>0 && iter <= switch_off_time)
{
PtSource_J(Ex, time);
}
}
///////////////////////////////////////////////////////////////////////////////
//Update the Ex field components which will be send to other processes
///////////////////////////////////////////////////////////////////////////////
void CFDTD_3D_LORENTZ::Update_Ex_send()
{
long i, j, k;
//update Ex_send_j
for (i = 0; i < nlx_Ex; i++)
{
for (k = 0; k < nlz_Ex; k++)
{
Ex_send_j[i][k] = Ex[i][0][k];
}
}
//update Ex_send_k
for (i = 0; i < nlx_Ex; i++)
{
for (j = 0; j < nly_Ex; j++)
{
Ex_send_k[i][j] = Ex[i][j][0];
}
}
}
///////////////////////////////////////////////////////////////////////////////////////
//Calculate the Ey field
///////////////////////////////////////////////////////////////////////////////////////
void CFDTD_3D_LORENTZ::Calc_Ey(long nlx, long nly, long nlz)
{
long i, j, k, kk, Nr_Lorentz;
double Gy_r, Sy_r, Sum_S;
double eps_0;
if (myrank_i == iprocs-1)
{
nlx--;
}
if (myrank_k == kprocs-1)
{
nlz--;
}
#pragma omp parallel default(shared) private(i,j,k,kk,Gy_r,Sy_r,Nr_Lorentz,Sum_S,eps_0)
{
eps_0 = 8.8541878176203898505365630317107502606083701665994498081024171524053950954599821142852891607182008932e-12; // [F/m]
i = 0;
k = 0;
#pragma omp for schedule(dynamic,nr_threads) nowait
for (j = 0; j < nly; j++)
{
Gy_r = Gy[i][j][k];
Gy[i][j][k] = K_Gy_a[k]*Gy[i][j][k] +
K_Gy_b[k]*( (Hx[i][j][k] - Hx_recv_k[i][j])*inv_dz -
(Hz[i][j][k] - Hz_recv_i[j][k])*inv_dx );
//Total field scattered field formulation
if (jel_plane_wave == 1 && jel_TS == 1)
{
//i0 face
if(jel_TS_planes[0] == 1)
TS_Gy_i0(i,j,k);
//i1 face
if(jel_TS_planes[1] == 1)
TS_Gy_i1(i,j,k);
//k0 face
if(jel_TS_planes[4] == 1)
TS_Gy_k0(i,j,k);
//k1 face
if(jel_TS_planes[5] == 1)
TS_Gy_k1(i,j,k);
}
Dy[i][j][k] = K_Dy_a[i]*(K_Dy_b[i]*Dy[i][j][k] +
K_Dy_c[j]*Gy[i][j][k] + K_Dy_d[j]*Gy_r);
Nr_Lorentz = (long) Mat[Ind[i][j][k]][0];
Sum_S = 0;
for (kk = 0; kk < Nr_Lorentz; kk++)
{
Sum_S = Sum_S + Sy[i][j][k][kk];
}
Ey[i][j][k] = (Dy[i][j][k] - eps_0*Sum_S)/(eps_0*Mat[Ind[i][j][k]][1]);
for (kk = 0; kk < Nr_Lorentz; kk++)
{
Sy_r = Sy[i][j][k][kk];
Sy[i][j][k][kk] = K_a[Ind[i][j][k]][kk] * Sy_r +
K_b[Ind[i][j][k]][kk] * Sy_2[i][j][k][kk] +
K_c[Ind[i][j][k]][kk] * Ey[i][j][k];
Sy_2[i][j][k][kk] = Sy_r;
}
}
k = 0;
#pragma omp for schedule(dynamic,nr_threads) nowait
for (i = 1; i < nlx; i++)
{
for (j = 0; j < nly; j++)
{
Gy_r = Gy[i][j][k];
Gy[i][j][k] = K_Gy_a[k]*Gy[i][j][k] +
K_Gy_b[k]*( (Hx[i][j][k] - Hx_recv_k[i][j])*inv_dz -
(Hz[i][j][k] - Hz[i-1][j][k])*inv_dx );
//Total field scattered field formulation
if (jel_plane_wave == 1 && jel_TS == 1)
{
//i0 face
if(jel_TS_planes[0] == 1)
TS_Gy_i0(i,j,k);
//i1 face
if(jel_TS_planes[1] == 1)
TS_Gy_i1(i,j,k);
//k0 face
if(jel_TS_planes[4] == 1)
TS_Gy_k0(i,j,k);
//k1 face
if(jel_TS_planes[5] == 1)
TS_Gy_k1(i,j,k);
}
Dy[i][j][k] = K_Dy_a[i]*(K_Dy_b[i]*Dy[i][j][k] +
K_Dy_c[j]*Gy[i][j][k] + K_Dy_d[j]*Gy_r);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -