📄 t_ufrint.m
字号:
% t_ufrint: adjoint interpolation via fractional fourier transform% y = t_ufrint(x,start,del)% Inputs% y dyadic sequence -- 1 by m = 2^integer% start starting sample of interpolation% del interval between samples% Outputs% x de-interpolated data -- 1 by m.% Description% Uses the fractional fft to interpolate% n = length(x) samples in between given samples% Example% y = ufrint(x,1,1) -- the identity operator% y = ufrint(x,1,.5) -- samples at midpoints,% 1,1.5,2,2.5,....,n/2-.5% Basic Idea:% 1. View data in x as representing X_t -n/2 <= t < n/2% set s = start-1-n/2, i.e. subscript 1 -> t= -n/2% 2. Fit trigonometric polynomial% X_t = T(t) ,% where % T(t) = m^{-1} * % Sum( tilde{X}_l exp(2*pi*i*l*t/m) : -n/2 <= l <= n/2 )% 3. Evaluate trigonometric polynomial% T(s + j*del) for j=0, ... , m-1% i.e. evaluate% Sum( tilde{X}_l exp(2*pi*i*l*(s+j*del)/m) : -n/2 <= l <= n/2 )% for each j=0,...,m-1% 4. Use Fractional FT to do this, i.e. write this sum as% Sum( tilde{X}_k^{(s)} exp(2*pi*i*k*(j*del)/m) : 0 <= k <= n )% * exp(-i*pi*j*del )% The sum has the form of a fractional FT except that it ranges% over n+1 terms. Take the last term out and deal with it% `by hand'. Then the sum has the form of a fractional FT. % %%% Part of BeamLab Version:200% Built:Friday,23-Aug-2002 00:00:00% This is Copyrighted Material% For Copying permissions see COPYING.m% Comments? e-mail beamlab@stat.stanford.edu%%% Part of BeamLab Version:200% Built:Saturday,14-Sep-2002 00:00:00% This is Copyrighted Material% For Copying permissions see COPYING.m% Comments? e-mail beamlab@stat.stanford.edu%
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -