⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 t_ufrint.m

📁 beamlet变化的工具箱
💻 M
字号:
%  t_ufrint: adjoint interpolation via fractional fourier transform% 	y = t_ufrint(x,start,del)%  Inputs% 	y		dyadic sequence -- 1 by m = 2^integer% 	start   starting sample of interpolation% 	del		interval between samples%  Outputs% 	x		de-interpolated data -- 1 by m.%  Description% 	Uses the fractional fft to interpolate%  n = length(x) samples in between given samples% 	Example% 		y = ufrint(x,1,1)  -- the identity operator% 		y = ufrint(x,1,.5) -- samples at midpoints,% 		     1,1.5,2,2.5,....,n/2-.5% 	Basic Idea:%    1.	View data in x as representing X_t -n/2 <= t < n/2% 		set s = start-1-n/2, i.e. subscript 1 -> t= -n/2%    2.	Fit trigonometric polynomial%       		X_t = T(t) ,% 		where % 			T(t) = m^{-1} * %            Sum( tilde{X}_l exp(2*pi*i*l*t/m) : -n/2 <= l <= n/2 )%    3.	Evaluate trigonometric polynomial%         	T(s + j*del) for j=0, ... , m-1% 		i.e. evaluate% 		    Sum( tilde{X}_l exp(2*pi*i*l*(s+j*del)/m) : -n/2 <= l <= n/2 )% 		for each j=0,...,m-1%    4.	Use Fractional FT to do this, i.e. write this sum as%            Sum( tilde{X}_k^{(s)} exp(2*pi*i*k*(j*del)/m) : 0 <= k <= n )%            * exp(-i*pi*j*del )% 		The sum has the form of a fractional FT except that it ranges% 		over n+1 terms.  Take the last term out and deal with it% 		`by hand'.  Then the sum has the form of a fractional FT. % %%% Part of BeamLab Version:200% Built:Friday,23-Aug-2002 00:00:00% This is Copyrighted Material% For Copying permissions see COPYING.m% Comments? e-mail beamlab@stat.stanford.edu%%% Part of BeamLab Version:200% Built:Saturday,14-Sep-2002 00:00:00% This is Copyrighted Material% For Copying permissions see COPYING.m% Comments? e-mail beamlab@stat.stanford.edu%

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -