📄 beamletrdp.m
字号:
% BeamletRDP -- Use Recursive Dyadic Partitioning to extact most `significant'% beams.% Usage% [btree,vtree,stree] = BeamletRDP(mEC);% Input% mEC modified beamlet coefficients - different values but same structure,% (4n)*(4n)*(log2(n)+1) array% Outputs% btree basis tree -- type of best split [2n-1 * 2n-1]% vtree value tree -- value of best split [2n-1 * 2n-1]% stree split tree -- direction of split [2n-1 * 2n-1 * 2]% Description% maximize_{P} sum_{e in P} M(e) - lambda * K(e),% where P is a set of all possible dyadic partitioning, % e is a subsquare, M(e) is the largest beamlet transform in the square e,% K(e) is a penalty function, in our case, we choose K(e) = sqrt(|e|). % lambda is a constant. % % This algorithm is designed to extract the most significant beamlets in % a noisy image. %%% Part of BeamLab Version:200% Built:Friday,23-Aug-2002 00:00:00% This is Copyrighted Material% For Copying permissions see COPYING.m% Comments? e-mail beamlab@stat.stanford.edu%%% Part of BeamLab Version:200% Built:Saturday,14-Sep-2002 00:00:00% This is Copyrighted Material% For Copying permissions see COPYING.m% Comments? e-mail beamlab@stat.stanford.edu%
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -