⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 chapter5.ps

📁 收集了遗传算法、进化计算、神经网络、模糊系统、人工生命、复杂适应系统等相关领域近期的参考论文和研究报告
💻 PS
📖 第 1 页 / 共 4 页
字号:
(5.4  Results and Discussion) 108 246.54 T0 F-0.03 (T) 126 222.54 P-0.03 (able 6  shows the total number of FSMs constructed in each run until one FSM in the) 132.49 222.54 P0.58 (population guided the ant to all 89 pieces of food within the allotted 200 time steps. The) 108 204.54 P0.95 (number of generations for each run is listed in the parentheses. The runs are sorted into) 108 186.54 P1.42 (increasing order so that the fastest and slowest of both methods are compared directly) 108 168.54 P1.42 (.) 537 168.54 P1.26 (Speed-up, shown in the last column, was computed by dividing the result from the run) 108 150.54 P1.79 (without freezing by the result of the run with freezing. T) 108 132.54 P1.79 (wo additional runs, one with) 395.9 132.54 P0.99 (freezing and one without, did not \336nd a solution within the maximum 5000 generations) 108 114.54 P(and have not been included in T) 108 96.54 T(able 6.) 261.05 96.54 T252.33 416.54 363.2 444 C2 12 Q0 X0 K(f) 253.33 427.73 T(o) 256.66 427.73 T(o) 262.66 427.73 T(d) 268.65 427.73 T0 F(0) 288.23 427.73 T(.) 294.23 427.73 T(0) 297.23 427.73 T(1) 303.23 427.73 T(1) 317.03 427.73 T2 F(t) 343.94 434.8 T0 F(2) 336.61 420.15 T(0) 342.61 420.15 T(0) 348.6 420.15 T3 F(-) 326.03 427.73 T(\050) 311.93 427.73 T(\051) 356.21 427.73 T(+) 278.65 427.73 T336.61 430.33 354.35 430.33 2 L0.33 H0 ZN0 0 612 792 CFMENDPAGE%%EndPage: "100" 6%%Page: "101" 6612 792 0 FMBEGINPAGE108 63 540 702 R7 X0 KV108 711 540 720 RV0 12 Q0 X(101) 522.01 712 T108 72 540 702 R7 XV0 X0.12 (First notice that all of the reported runs, both with and without freezing, evolved solu-) 126 376 P2.24 (tions to the ant problem more quickly than Jef) 108 358 P2.24 (ferson et al. \0501992\051 which constructed) 346.93 358 P0.39 (3,303,014 FSMs. The improvements range between factors of 52 and 4.5. Such improve-) 108 340 P0.31 (ment is often the case when converting from a genetic algorithm using binary representa-) 108 322 P4.44 (tions to an evolutionary program. This is because the added complication of an) 108 304 P-0.23 (interpretation function to convert between the genotypic and phenotypic representations in) 108 286 P0.35 (the genetic algorithm is avoided in evolutionary programming. Whether or not the dif) 108 268 P0.35 (fer-) 522.69 268 P2 (ences between the two evolutionary algorithms is solely responsible for the improved) 108 250 P1.4 (results or if our modi\336ed \336tness function also contributed to the speed-up is unknown.) 108 232 P1.88 (Regardless, the improvement over Jef) 108 214 P1.88 (ferson et al. \0501992\051 both in the previous chapter) 296.82 214 P(using recurrent neural networks and here with FSMs is noteworthy) 108 196 T(.) 428 196 T-0.2 (Next, notice that each of the runs show speed-up in favor of those experiments that use) 126 166 P1.26 (the added freeze operators. An explanation for these results is that the freezing process) 108 148 P-0.12 (identi\336es and protects components that are important to the viability of the of) 108 130 P-0.12 (fspring. Sub-) 477.49 130 P0.94 (sequent mutations are forced to alter only less crucial components in the representation.) 108 112 P0.42 (This removes from consideration a number of non-viable modi\336cations that are routinely) 108 94 P0.73 (explored when freezing is unavailable. The fact that no knowledge of the task is used to) 108 76 P4 F(T) 162.33 694 T(able 6.) 168.55 694 T2 F(Speed-up r) 204.2 694 T(esults for FSA induction for 4 runs with and) 256.04 694 T(without fr) 204.01 680 T(eeze and unfr) 250.56 680 T(eeze.) 314.74 680 T(Run) 179.51 609 T(Number of FSMs Evaluated) 247.01 636 T(\050Number of Generations\051) 253.18 622 T(Speed Up) 425.48 609 T(W) 246.25 596 T(ithout) 255.58 596 T(Fr) 225.73 582 T(eeze/Unfr) 237.27 582 T(eeze) 283.46 582 T(W) 351.7 596 T(ith) 361.03 596 T(Fr) 323.51 582 T(eeze/Unfr) 335.06 582 T(eeze) 381.25 582 T0 F(1) 186.18 550 T(187,950) 245.43 558 T(\0501251\051) 248.93 542 T(63,000) 346.21 558 T(\050418\051) 349.71 542 T(2.99) 438.14 550 T(2) 186.18 512 T(269,850) 245.43 520 T(\0501797\051) 248.93 504 T(152,100) 343.21 520 T(\0501012\051) 346.71 504 T(1.77) 438.14 512 T(3) 186.18 474 T(331,200) 245.43 482 T(\0502206\051) 248.93 466 T(156,600) 343.21 482 T(\0501042\051) 346.71 466 T(2.12) 438.14 474 T(4) 186.18 436 T(734,850) 245.43 444 T(\0504897\051) 248.93 428 T(607,950) 343.21 444 T(\0504051\051) 346.71 428 T(1.20) 438.14 436 T162.33 651.75 162.33 420.25 2 LV0.5 H0 ZN216.02 652.25 216.02 419.75 2 LVN313.81 612.25 313.81 419.75 2 LVN411.59 652.25 411.59 419.75 2 LVN485.67 651.75 485.67 420.25 2 LVN162.08 652 485.92 652 2 LVN215.77 612 411.84 612 2 LVN162.58 573.25 485.42 573.25 2 LVN162.58 570.75 485.42 570.75 2 LVN162.08 534 485.92 534 2 LVN162.08 496 485.92 496 2 LVN162.08 458 485.92 458 2 LVN162.08 420 485.92 420 2 LVNFMENDPAGE%%EndPage: "101" 7%%Page: "102" 7612 792 0 FMBEGINPAGE108 63 540 702 R7 X0 KV108 711 540 720 RV0 12 Q0 X(102) 522.01 712 T108 72 540 702 R7 XV0 X0.17 (determine which components to freeze indicates the presence of emer) 108 299.02 P0.17 (gent knowledge. By) 443.39 299.02 P0.64 (interacting with the task environment, components of the FSMs that are necessary to the) 108 281.02 P(task are identi\336ed through the behaviorial results after they are modi\336ed.) 108 263.02 T1.2 (Figure 23 shows the evolved FSM from run 1 with freezing. Frozen transitions and) 126 233.02 P1.26 (states are shown in grey) 108 215.02 P1.26 (. This FSM guides the ant to all 89 pieces of food in 193 time) 227.51 215.02 P0.26 (steps. There are a total of 22 states in this solution only eleven of which are used to solve) 108 197.02 P0.8 (the problem. T) 108 179.02 P0.8 (welve of the states and 23 of the 44 possible transitions are frozen in this) 179.71 179.02 P0.81 (solution. It is dif) 108 161.02 P0.81 (\336cult to deduce any easily described signi\336cance for the frozen compo-) 189.51 161.02 P0.54 (nents in this FSM. The non-determinism of the operator places an emphasis on whatever) 108 143.02 P0.9 (gets results. One observation is that states 1 through 6 and the transitions between them) 108 125.02 P1.22 (are lar) 108 107.02 P1.22 (gely protected from modi\336cation. This portion of the FSM is responsible for tra-) 139.3 107.02 P108 72 540 702 C119.7 307.02 528.3 702 C7 X0 K90 450 12.29 10.42 192.42 548.56 G0.5 H2 Z0 X90 450 12.29 10.42 192.42 548.56 A4 X90 450 12.29 10.42 174.51 473.95 G0 X90 450 12.29 10.42 174.51 473.95 A7 X90 450 12.29 10.42 244.68 429.88 G0 X90 450 12.29 10.42 244.68 429.88 A4 X90 450 12.29 10.42 321.67 424.92 G0 X90 450 12.29 10.42 321.67 424.92 A4 X90 450 12.29 10.42 397.84 432.03 G0 X90 450 12.29 10.42 397.84 432.03 A7 X90 450 12.29 10.42 462.82 519.42 G0 X90 450 12.29 10.42 462.82 519.42 A4 X90 450 12.29 10.42 463.6 586.21 G0 X90 450 12.29 10.42 463.6 586.21 A4 X90 450 12.29 10.42 463.61 458.32 G0 X90 450 12.29 10.42 463.61 458.32 A4 X90 450 12.29 10.42 463.6 642.35 G0 X90 450 12.29 10.42 463.6 642.35 A4 X90 450 12.29 10.42 328.88 676.45 G0 X90 450 12.29 10.42 328.88 676.45 A7 X90 450 12.29 10.42 201.39 650.87 G0 X90 450 12.29 10.42 201.39 650.87 A310.61 673.36 316.19 671.14 311.48 667.42 311.05 670.39 4 YV211.41 655.98 311.05 670.39 2 LN0 12 Q(F/M) 250.7 668.79 T216.53 644.33 211.41 647.45 216.67 650.33 216.6 647.33 4 Y3 XV216.6 647.33 449.84 641.77 2 LN448.59 652.43 453.04 648.4 447.33 646.56 447.96 649.5 4 YV341.32 672.09 447.97 649.49 2 LN2 F0 X(F/M) 388.89 664.96 T(F/M) 384.09 645.82 T185.59 667.13 190.55 657.88 180.06 658.2 182.82 662.66 4 YV165.42 673.28 182.83 662.66 2 L3 HN0.5 H3 X90 180 124.29 33.67 331.7 662.14 A468.37 659.4 466.4 653.61 462.38 658.21 465.38 658.8 4 YV7 90 135.51 42.63 330.9 653.61 A0 X(N/M) 211.41 684.85 T(1) 198.39 647.9 T(2) 325.88 673.48 T(3) 460.6 639.38 T450.85 597.84 453.58 592.51 447.59 592.8 449.22 595.32 4 Y3 XV335.71 667.83 449.22 595.32 2 LN0 X(N/R) 366.17 624.46 T(4) 460.6 583.24 T465.59 535.06 462.4 529.98 459.59 535.28 462.59 535.17 4 YV464.01 574.74 462.59 535.17 2 LN0 F(F/M) 465.6 555.82 T2 F(5) 459.82 516.45 T(6) 460.61 455.35 T466.21 475.49 463.21 470.29 460.21 475.49 463.21 475.49 4 YV463.21 506.53 463.21 475.49 2 LN0 F(F/M) 465.23 490.08 T213.76 638.15 211.41 643.66 217.36 642.94 215.56 640.54 4 Y3 XV451.99 464.6 215.56 640.54 2 LN2 F0 X(F/M) 368.85 528.52 T410.92 445.65 406.27 441.87 405.32 447.8 408.12 446.73 4 Y3 XV457.6 576.87 408.13 446.72 2 LN0 X(N/L) 427.12 556.24 T(7) 394.84 429.06 T340.37 423.09 334.89 425.54 339.75 429.06 340.06 426.07 4 YV383.01 430.5 340.07 426.06 2 LN0 F(N/M) 351.74 417.03 T2 F(8) 318.67 421.95 T261.51 424.66 256.32 427.66 261.51 430.66 261.51 427.66 4 Y3 XV309.24 427.66 261.51 427.66 2 LN0 X(N/L) 280.37 416.26 T0 F(9) 241.68 426.97 T446.04 512.47 451.95 511.46 448.12 506.84 447.08 509.65 4 YV253.11 438.31 447.09 509.65 2 LN(N/L) 311.64 470.3 T319.92 662.49 324.47 666.4 325.58 660.5 322.75 661.49 4 Y3 XV245.9 441.15 322.76 661.49 2 LN2 F0 X(N/R) 257.93 467.44 T211.69 548.78 205.79 549.88 209.69 554.44 210.69 551.61 4 Y3 XV450.37 635.85 210.7 551.6 2 LN0 X(1) 186.42 545.59 T(1) 191.53 545.59 T(10) 168.51 470.98 T(N/M) 335.71 604.57 T191.39 470.38 185.75 472.43 190.34 476.29 190.87 473.34 4 YV448.77 518.61 190.87 473.33 2 LN0 F(N/M) 317.26 507.26 T450.78 632.38 456.78 632.3 453.71 627.14 452.25 629.76 4 Y3 XV184.95 481.66 452.26 629.76 2 LN2 F0 X(N/M) 227.45 520.01 T313.8 667.92 319.65 669.25 317.88 663.52 315.84 665.72 4 Y3 XV200.18 558.4 315.85 665.72 2 LN0 X(F/M) 201.79 585.38 T238.74 444.98 237.87 439.04 233.16 442.76 235.95 443.87 4 Y3 XV198.58 538.51 235.95 443.86 2 LN0 X(N/R) 184.15 512.91 T133.65 343.51 514.83 389.64 R7 XV1 10 Q0 X3.81 (Figur) 133.65 382.97 P3.81 (e 23: FSM evolved with compr) 157.35 382.97 P3.81 (ession in 420 generations. Fr) 306.41 382.97 P3.81 (ozen states and) 442.8 382.97 P-0.05 (transitions ar) 133.65 372.97 P-0.05 (e shown in gr) 190.88 372.97 P-0.05 (ey) 247.46 372.97 P-0.05 (. Input symbol set is \050F) 256.35 372.97 P-0.05 (, N\051 and output symbol set is \050M, L, R,) 352.34 372.97 P0.87 (N\051 as described in the text. Extraneous states and transitions ar) 133.65 362.97 P0.87 (e not shown. The initial) 411.68 362.97 P(state is indicated by the oversized arr) 133.65 352.97 T(ow) 292.25 352.97 T(.) 303.92 352.97 T108 72 540 702 C0 0 612 792 CFMENDPAGE%%EndPage: "102" 8%%Page: "103" 8612 792 0 FMBEGINPAGE108 63 540 702 R7 X0 KV108 711 540 720 RV0 12 Q0 X(103) 522.01 712 T108 72 540 702 R7 XV0 X1.31 (versing the continuous stretches of food of the path. Mutation of one of these states or) 108 694 P(transitions has a high probability of creating an of) 108 676 T(fspring far below optimal.) 346.96 676 T0.19 (In a population, dif) 126 646 P0.19 (ferent members of the population generally encode vastly dif) 218.29 646 P0.19 (ferent) 512.03 646 P0.54 (approaches to solving the task. This means that a standard approach to credit assignment) 108 628 P0.35 (would need to contain knowledge about each of the various possible solutions in order to) 108 610 P0.23 (determine which components of each FSM to modify) 108 592 P0.23 (. This amount of explicit knowledge) 364.97 592 P0.72 (would be prohibitive and would involve accurately determining which solution the FSM) 108 574 P0.09 (approximated most closely) 108 556 P0.09 (. However) 236.65 556 P0.09 (, empirical credit assignment allows no explicit task-) 286.21 556 P1.75 (speci\336c knowledge to determine those components that are crucial to the solution and) 108 538 P(those that should be considered for modi\336cation.) 108 520 T1 F(5.5  Conclusion) 108 484 T0 F0.69 (This chapter demonstrates that components of an FSM that are imperative to solving) 126 460 P-0.03 (the problem can be identi\336ed using emer) 108 442 P-0.03 (gent techniques. This is exploited as a weak form) 303.44 442 P0.15 (of local credit assignment to speed-up the FSM acquisition. The experiments demonstrate) 108 424 P-0.1 (that emer) 108 406 P-0.1 (gent techniques can identify task-speci\336c features of a representation without the) 152.65 406 P(need for explicit task-speci\336c knowledge.) 108 388 TFMENDPAGE%%EndPage: "103" 9%%Trailer%%BoundingBox: 0 0 612 792%%Pages: 8 1%%DocumentFonts: Times-Roman%%+ Times-Bold%%+ Times-Italic%%+ Symbol%%+ Times-BoldItalic

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -