⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 chapter1.ps

📁 收集了遗传算法、进化计算、神经网络、模糊系统、人工生命、复杂适应系统等相关领域近期的参考论文和研究报告
💻 PS
📖 第 1 页 / 共 5 页
字号:
	/grnt FMLOCAL	/redt FMLOCAL	/indx FMLOCAL	/cynu FMLOCAL	/magu FMLOCAL	/yelu FMLOCAL	/k FMLOCAL	/u FMLOCAL/colorsetup {	currentcolortransfer	/gryt exch def	/blut exch def	/grnt exch def	/redt exch def	0 1 255 {		/indx exch def		/cynu 1 red indx get 255 div sub def		/magu 1 green indx get 255 div sub def		/yelu 1 blue indx get 255 div sub def		/k cynu magu min yelu min def		/u k currentundercolorremoval exec def		nredt indx 1 0 cynu u sub max sub redt exec put		ngreent indx 1 0 magu u sub max sub grnt exec put		nbluet indx 1 0 yelu u sub max sub blut exec put		ngrayt indx 1 k currentblackgeneration exec sub gryt exec put	} for	{255 mul cvi nredt exch get}	{255 mul cvi ngreent exch get}	{255 mul cvi nbluet exch get}	{255 mul cvi ngrayt exch get}	setcolortransfer	{pop 0} setundercolorremoval	{} setblackgeneration	} bind def	/tran FMLOCAL/fakecolorsetup {	/tran 256 string def	0 1 255 {/indx exch def 		tran indx		red indx get 77 mul		green indx get 151 mul		blue indx get 28 mul		add add 256 idiv put} for	currenttransfer	{255 mul cvi tran exch get 255.0 div}	exch Fmcc settransfer} bind def/BITMAPCOLOR { 	/d 8 def	gsave	translate rotate scale /h exch def /w exch def	/bitmapsave save def 	colorsetup	/is w d wbytes string def	/cf currentfile def 	w h d [w 0 0 h neg 0 h] 	{cf is readhexstring pop} {is} {is} true 3 colorimage 	bitmapsave restore 	grestore	} bind def/BITMAPCOLORc { 	/d 8 def	gsave	translate rotate scale /h exch def /w exch def	/lb w d wbytes def 	sl lb lt {lb ms} if 	/bitmapsave save def 	colorsetup	/is im 0 lb getinterval def 	ws 0 lb getinterval is copy pop 	/cf currentfile def 	w h d [w 0 0 h neg 0 h] 	{ip} {is} {is} true 3 colorimage	bitmapsave restore 	grestore	} bind def/BITMAPTRUECOLORc {         gsave        translate rotate scale /h exch def /w exch def        /bitmapsave save def                 /is w string def                ws 0 w getinterval is copy pop         /cf currentfile def         w h 8 [w 0 0 h neg 0 h]         {ip} {gip} {bip} true 3 colorimage        bitmapsave restore         grestore        } bind def/BITMAPTRUECOLOR {         gsave        translate rotate scale /h exch def /w exch def        /bitmapsave save def         /is w string def        /gis w string def        /bis w string def        /cf currentfile def         w h 8 [w 0 0 h neg 0 h]         { cf is readhexstring pop }         { cf gis readhexstring pop }         { cf bis readhexstring pop }         true 3 colorimage         bitmapsave restore         grestore        } bind def/BITMAPTRUEGRAYc {         gsave        translate rotate scale /h exch def /w exch def        /bitmapsave save def                 /is w string def                ws 0 w getinterval is copy pop         /cf currentfile def         w h 8 [w 0 0 h neg 0 h]         {ip gip bip w gray} image        bitmapsave restore         grestore        } bind def/ww FMLOCAL/r FMLOCAL/g FMLOCAL/b FMLOCAL/i FMLOCAL/gray {         /ww exch def        /b exch def        /g exch def        /r exch def        0 1 ww 1 sub { /i exch def r i get .299 mul g i get .587 mul			b i get .114 mul add add r i 3 -1 roll floor cvi put } for        r        } bind def/BITMAPTRUEGRAY {         gsave        translate rotate scale /h exch def /w exch def        /bitmapsave save def         /is w string def        /gis w string def        /bis w string def        /cf currentfile def         w h 8 [w 0 0 h neg 0 h]         { cf is readhexstring pop           cf gis readhexstring pop           cf bis readhexstring pop w gray}  image        bitmapsave restore         grestore        } bind def/BITMAPGRAY { 	8 {fakecolorsetup} COMMONBITMAP	} bind def/BITMAPGRAYc { 	8 {fakecolorsetup} COMMONBITMAPc	} bind def/ENDBITMAP {	} bind defend 	/ALDsave FMLOCAL	/ALDmatrix matrix def ALDmatrix currentmatrix pop/StartALD {	/ALDsave save def	 savematrix	 ALDmatrix setmatrix	} bind def/InALD {	 restorematrix	} bind def/DoneALD {	 ALDsave restore	} bind def%%EndProlog%%BeginSetup(3.0) FMVERSION1 1 612 792 0 1 3 FMDOCUMENT0 0 /Times-Roman FMFONTDEFINE1 0 /Times-Bold FMFONTDEFINE2 0 /Times-Italic FMFONTDEFINE32 FMFILLS0 0 FMFILL1 .1 FMFILL2 .3 FMFILL3 .5 FMFILL4 .7 FMFILL5 .9 FMFILL6 .97 FMFILL7 1 FMFILL8 <0f1e3c78f0e1c387> FMFILL9 <0f87c3e1f0783c1e> FMFILL10 <cccccccccccccccc> FMFILL11 <ffff0000ffff0000> FMFILL12 <8142241818244281> FMFILL13 <03060c183060c081> FMFILL14 <8040201008040201> FMFILL16 1 FMFILL17 .9 FMFILL18 .7 FMFILL19 .5 FMFILL20 .3 FMFILL21 .1 FMFILL22 0.03 FMFILL23 0 FMFILL24 <f0e1c3870f1e3c78> FMFILL25 <f0783c1e0f87c3e1> FMFILL26 <3333333333333333> FMFILL27 <0000ffff0000ffff> FMFILL28 <7ebddbe7e7dbbd7e> FMFILL29 <fcf9f3e7cf9f3f7e> FMFILL30 <7fbfdfeff7fbfdfe> FMFILL%%EndSetup%%Page: "1" 1%%BeginPaperSize: Letter%%EndPaperSize612 792 0 FMBEGINPAGE108 72 540 81 R7 X0 KV0 12 Q0 X(1) 324 73 T108 90 540 648 R7 XV0 X(CHAPTER I) 293.18 640 T(INTRODUCTION: SEARCH AND EXPLICIT KNOWLEDGE) 169.44 604 T1 F(1.0  Intr) 108 562 T(oduction: Sear) 149.43 562 T(ch and Explicit Knowledge) 224.17 562 T0 F-0.24 (T) 126 536 P-0.24 (wo broad goals cover most of the subtopics within arti\336cial intelligence \050AI\051 research) 132.49 536 P-0 (\050Schank 1987\051. One goal is the study of human intelligence and problem solving by creat-) 108 518 P0.99 (ing computational models \050e.g. Newell and Simon 1963; Anderson 1976, 1983; Minsky) 108 500 P0.33 (1985; McClelland and Rumelhart 1986a; Newell 1990; and many others\051. Such cognitive) 108 482 P0.03 (modeling work is concerned mainly with issues of human psychological performance, but) 108 464 P0.83 (not necessarily making programs intelligent, although this is occasionally assumed. AI\325) 108 446 P0.83 (s) 535.33 446 P0.02 (alternative goal is the creation of techniques that allow computers to perform well at tasks) 108 428 P1.65 (that humans are currently more pro\336cient \050e.g. Samuel 1959; Shortlif) 108 410 P1.65 (fe 1976; Berliner) 454.76 410 P0.31 (1977; Lindsay et al 1980; Erman et al. 1980; and many others\051. Like its cognitive model-) 108 392 P2.42 (ing alter) 108 374 P2.42 (-ego, this AI methodology often involves considering human intelligence for) 149.82 374 P1.34 (computational inspiration. However) 108 356 P1.34 (, it is not necessary to recapitulate human cognitive) 283.09 356 P(abilities for a computer to perform intelligently) 108 338 T(.) 333.74 338 T1.2 (A commonality in both forms of AI is) 126 308 P2 F1.2 (sear) 320.84 308 P1.2 (ch) 341.05 308 P0 F1.2 (. Search is the topic from which most) 352.37 308 P0.82 (other AI subtopics specialize, including learning, discovery) 108 290 P0.82 (, pattern recognition, classi\336-) 397.29 290 P0.72 (cation, diagnosis and design. Search methods for such problems fall into two categories,) 108 272 P-0.15 (strong and weak.) 108 254 P2 F-0.15 (Str) 192.16 254 P-0.15 (ong methods) 205.72 254 P0 F-0.15 ( are rich in task-speci\336c knowledge that a programmer or) 266.53 254 P0.51 (knowledge engineer places explicitly into the search mechanism. Strong methods tend to) 108 236 P1.19 (be narrowly focused but fairly ef) 108 218 P1.19 (\336cient in their ability to identify domain speci\336c solu-) 271.28 218 P0.56 (tions.) 108 200 P2 F0.56 (W) 137.88 200 P0.56 (eak methods) 146.77 200 P0 F0.56 ( encode search strategies that are task independent and consequently) 206.94 200 P0.96 (less ef) 108 182 P0.96 (\336cient. Strong methods often use one or more weak methods working underneath) 139.05 182 P0.31 (the task-speci\336c knowledge. In spite of the central role of search in AI, the focus of AI is) 108 164 P0.35 (to solve problems. Given this fact, this dissertation often refers to a particular search task) 108 146 P0.56 (as an instance of) 108 128 P2 F0.56 (pr) 192.84 128 P0.56 (oblem solving) 203.06 128 P0 F0.56 (. Likewise, an algorithm that performs problem solving) 270.58 128 P(is referred to as a) 108 110 T2 F(pr) 193.59 110 T(oblem solver) 203.8 110 T0 F(.) 264.77 110 TFMENDPAGE%%EndPage: "1" 2%%Page: "2" 2612 792 0 FMBEGINPAGE108 63 540 702 R7 X0 KV108 711 540 720 RV0 12 Q0 X(2) 534 712 T108 90 540 702 R7 XV0 X0.09 (Often a task is too dif) 126 694 P0.09 (\336cult to engineer out suf) 229.84 694 P0.09 (\336cient knowledge for its solution, or the) 347.24 694 P1.21 (goal is to discover solutions too complex for humans to construct. In these cases, there) 108 676 P0.31 (may be no strong method to rely on and the augmentation of a weak method by task-spe-) 108 658 P0.75 (ci\336c knowledge is infeasible. Such complex problems still \336t well within the AI charter) 108 640 P0.75 (,) 537 640 P0.18 (but by virtue of their complexity traditional AI techniques can not adequately solve them.) 108 622 P1.93 (Thus, the strong vs. weak dichotomy presents a constrained methodology for creating) 108 604 P2 (intelligent programs in AI; either explicitly engineer out task knowledge or analytical) 108 586 P(solutions for a strong method or be doomed to the inef) 108 568 T(\336cient search of weak methods.) 368.95 568 T0.04 (The focus of the following work is twofold, as re\337ected in the title of this dissertation.) 126 538 P1.39 (The primary focus is to investigate algorithms that do not require) 108 520 P2 F1.39 (explicitly engineer) 438.8 520 P1.39 (ed) 528.68 520 P1.14 (task knowledge) 108 502 P0 F1.14 ( for search but still perform as strong methods. These methods \336t into a) 182.75 502 P1.64 (class of techniques that this dissertation de\336nes as) 108 484 P2 F1.64 (emer) 364.32 484 P1.64 (gent intelligence) 387.85 484 P0 F1.64 (. Of particular) 469.11 484 P0.62 (interest is the investigation of emer) 108 466 P0.62 (gent intelligence using evolutionary algorithms, algo-) 279.75 466 P0.12 (rithms that use an analogy to natural evolution as their base computational engine. Before) 108 448 P0.59 (discussing these points and the content of this dissertation further) 108 430 P0.59 (, the following sections) 426.3 430 P1.86 (discuss the approach of knowledge-based arti\336cial intelligence, its reliance on explicit) 108 412 P(task knowledge and the classic problems which result.) 108 394 T1 F(1.1  Literal Knowledge Level Models) 108 358 T0 F0.05 (Newell \0501981, 1982\051 de\336nes two levels of observation that can be used to describe the) 126 334 P1.86 (intelligence contained by any agent, including a computer) 108 316 P1.86 (. The \336rst, the) 398.14 316 P2 F1.86 (symbol level) 475.52 316 P0 F1.86 (,) 537 316 P0.03 (describes the representations and the program used by the agent. This level roughly corre-) 108 298 P0.2 (sponds with Marr) 108 280 P0.2 (\325) 193.46 280 P0.2 (s \0501981, 1982\051 representation and algorithm level. The) 196.79 280 P2 F0.2 (knowledge level) 462.86 280 P0 F-0.13 (is a level of description above the symbol level. A description of an intelligent agent at the) 108 262 P0.12 (knowledge level has four components. The \336rst is a set of) 108 244 P2 F0.12 (actions) 389.16 244 P0 F0.12 ( that can be executed by) 423.81 244 P2.08 (the agent. Second is a collection of) 108 226 P2 F2.08 (goals) 293.11 226 P0 F2.08 ( for the agent that provide a context for its) 319.1 226 P2.02 (actions. The third component is) 108 208 P2 F2.02 (knowledge) 272.68 208 P0 F2.02 ( that allows the agent to achieve the goals) 323.97 208 P-0.07 (through the execution of actions. The \336nal component is what Newell \0501981, 1982\051 calls a) 108 190 P2 F0.17 (principle of rationality) 108 172 P0.17 (.) 216.97 172 P0 F

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -