📄 chapter0.ps
字号:
(REPRESENT) 140.4 590 T(A) 211.49 590 T(TIONS) 219.26 590 T( . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .) 260.86 590 T( 104) 511.51 590 T0 F(6.1 Problem Decomposition) 140.4 568 T(. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .) 281.85 568 T( 104) 511.51 568 T(6.2 The Genetic Library Builder) 140.4 554 T( . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .) 302.83 554 T( 106) 511.51 554 T(6.2.1 Compression of Modules) 162 540 T(. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .) 317.83 540 T( 107) 511.51 540 T(6.2.2 Expansion of Compressed Modules) 162 524 T( . . . . . . . . . . . . . . . . . . . . . . .) 368.8 524 T( 1) 511.73 524 T(10) 520.28 524 T(6.2.3 Non-monotonic Formation of Hierarchical Decompositions) 162 508 T( . . . .) 482.73 508 T( 1) 511.73 508 T(10) 520.28 508 T(6.2.4 Evaluation of Modules) 162 492 T(. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .) 305.83 492 T( 1) 511.95 492 T(1) 520.5 492 T(1) 526.05 492 T(6.2.5 The Emer) 162 476 T(gence of High-Level Representations) 239.39 476 T( . . . . . . . . . . . . . .) 422.77 476 T( 1) 511.73 476 T(12) 520.28 476 T(6.2.6 T) 162 460 T(ask-Speci\336c Feature Acquisition) 198.47 460 T(. . . . . . . . . . . . . . . . . . . . . . . . .) 359.8 460 T( 1) 511.73 460 T(13) 520.28 460 T(6.3 Generality of Emer) 140.4 444 T(gent Modules) 253.76 444 T(. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .) 323.82 444 T( 1) 511.73 444 T(14) 520.28 444 T(6.4 Comparison to Koza\325) 140.4 430 T(s ADFs) 263.99 430 T(. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .) 305.83 430 T( 1) 511.73 430 T(14) 520.28 430 T(6.5 The Emer) 140.4 416 T(gence of Environment Speci\336c Modules) 208.8 416 T(. . . . . . . . . . . . . . . . .) 407.78 416 T( 1) 511.73 416 T(15) 520.28 416 T(6.5.1 T) 162 402 T(ower of Hanoi Experiments) 198.47 402 T(. . . . . . . . . . . . . . . . . . . . . . . . . . . . .) 335.82 402 T( 1) 511.73 402 T(15) 520.28 402 T(6.5.2 Experiments with T) 162 386 T(ic T) 286.84 386 T(ac T) 304.98 386 T(oe) 325.12 386 T(. . . . . . . . . . . . . . . . . . . . . . . . . . . .) 341.81 386 T( 1) 511.73 386 T(17) 520.28 386 T(6.6 Discussion) 140.4 370 T( . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .) 218.88 370 T( 123) 511.51 370 T(6.7 Conclusion) 140.4 356 T(. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .) 221.88 356 T( 123) 511.51 356 T2 F(VII) 113.4 332 T(EMERGENT GOAL-DIRECTED BEHA) 140.4 332 T(VIOR) 351.42 332 T( . . . . . . . . . . . . . . . . . . . .) 386.79 332 T( 125) 511.51 332 T0 F(7.1 Competitive Learning) 140.4 310 T( . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .) 272.85 310 T( 126) 511.51 310 T(7.2 Competitive Learning in Evolutionary Algorithms) 140.4 296 T(. . . . . . . . . . . . . . . . .) 407.78 296 T( 128) 511.51 296 T(7.2.1 Standard Fitness Functions and Competitive Selection) 162 282 T(. . . . . . . . .) 455.75 282 T( 129) 511.51 282 T(7.2.2 Competitive Fitness Functions) 162 266 T(. . . . . . . . . . . . . . . . . . . . . . . . . . . .) 341.81 266 T( 130) 511.51 266 T(7.2.2.1 Axelrod\325) 194.4 250 T(s Full Competitive Model) 276.02 250 T( . . . . . . . . . . . . . . . . .) 404.78 250 T( 130) 511.51 250 T(7.2.2.2 Hillis\325 Bipartite Competitive Model) 194.4 234 T( . . . . . . . . . . . . . . . .) 410.77 234 T( 132) 511.51 234 T(7.3 T) 140.4 218 T(ournament Fitness) 167.88 218 T( . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .) 260.86 218 T( 134) 511.51 218 T(7.4 Experiments) 140.4 204 T(. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .) 227.88 204 T( 136) 511.51 204 T(7.5 Results) 140.4 190 T( . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .) 200.89 190 T( 138) 511.51 190 T(7.6 Discussion) 140.4 176 T( . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .) 218.88 176 T( 141) 511.51 176 T(7.7 Conclusion) 140.4 162 T(. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .) 221.88 162 T( 142) 511.51 162 T2 F(VIII) 111.07 138 T(SUMMAR) 140.4 138 T(Y AND CONCLUSIONS) 195.27 138 T(. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .) 329.82 138 T( 144) 511.51 138 T(BIBLIOGRAPHY) 108 94 T( 152) 519.01 94 TFMENDPAGE%%EndPage: "ix" 12%%Page: "x" 12612 792 0 FMBEGINPAGE108 72 540 81 R7 X0 KV0 12 Q0 X(x) 321 73 T108 90 540 648 R7 XV2 F0 X(LIST OF T) 275.79 640 T(ABLES) 332.89 640 T(T) 108 582 T(ABLE) 115.11 582 T(P) 507.57 582 T(AGE) 514.01 582 T0 F(1.) 121.5 558 T(Differences between artificial intelligence and emergent intelligence.) 144 558 T(. . . . . .) 479.74 558 T( 59) 514.5 558 T(2.) 121.5 538 T(Characterizations of the seven languages from Tomita \0501982\051.) 144 538 T( . . . . . . . . . . .) 446.75 538 T( 81) 514.5 538 T(3.) 121.5 518 T(Positive and negative examples for the seven languages investigated in) 144 518 T(Tomita \0501982\051.) 144 504 T1 F( e) 216.62 504 T0 F( signifies the null string.) 224.88 504 T( . . . . . . . . . . . . . . . . . . . . . . . . . . . .) 344.81 504 T( 83) 514.5 504 T(4.) 121.5 482 T-0.4 (Results from Watrous and Kuhn \0501992\051 for the seven languages shown in) 144 482 P(Table 3.) 144 468 T( . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .) 188.9 468 T( 84) 514.5 468 T(5.) 121.5 446 T-0.28 (Experimental results for GNARL on the seven languages shown in Table) 144 446 P(3. Units are identical for the same measures in Table 4.) 144 432 T(. . . . . . . . . . . . . . . . .) 413.77 432 T( 85) 514.5 432 T(6.) 121.5 410 T-0.65 (Speed-up results for FSA induction for 4 runs with and without freeze and) 144 410 P(unfreeze.) 144 396 T(. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .) 191.9 396 T( 101) 511.51 396 T(7.) 121.5 374 T(Table showing results of competition experiments.) 144 374 T( . . . . . . . . . . . . . . . . . . .) 392.78 374 T( 138) 511.51 374 TFMENDPAGE%%EndPage: "x" 13%%Page: "xi" 13612 792 0 FMBEGINPAGE108 72 540 81 R7 X0 KV0 12 Q0 X(xi) 319.33 73 T108 90 540 648 R7 XV2 F0 X(LIST OF FIGURES) 272.35 640 T(FIGURE) 108 582 T(P) 507.57 582 T(AGE) 514.01 582 T0 F(1.) 121.5 558 T(Comparison of the effectiveness of weak and strong methods over the) 144 558 T-0.26 (variety of tasks that can be attempted. Strong methods are specialized for) 144 544 P(a set of tasks and more effective while weak methods are general across) 144 530 T(tasks but less effective.) 144 516 T( . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .) 260.86 516 T(18) 516 516 T(2.) 121.5 494 T(Algorithm for Generate and Test weak method.) 144 494 T( . . . . . . . . . . . . . . . . . . . . . . .) 374.79 494 T( 19) 514.5 494 T(3.) 121.5 474 T(Algorithm for hill climbing weak method. the switch function switches) 144 474 T(the values of its arguments so that each has the others value.) 144 460 T(. . . . . . . . . . . . .) 437.76 460 T(20) 516 460 T(4.) 121.5 438 T(Recursive algorithm for depth-first search. O is the set of operators that) 144 438 T-0.64 (defines the connectivity of the search space. The connectivity of the space) 144 424 P(is assumed to be a tree.) 144 410 T( . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .) 260.86 410 T(21) 516 410 T(5.) 121.5 388 T-0.24 (Algorithm for beam search.) 144 388 P3 F-0.24 (obj-queue) 278.61 388 P0 F-0.24 ( and) 326.57 388 P3 F-0.24 (next-queue) 349.41 388 P0 F-0.24 ( are standard LIFO) 402.03 388 P(queues with standard operators) 144 374 T3 F(head) 295.89 374 T0 F(,) 319.2 374 T3 F(push) 325.2 374 T0 F( and) 347.85 374 T3 F(pop) 371.17 374 T0 F(. The sort routine is) 389.16 374 T-0.55 (assumed to use Tester to determine the ordering so that the objects closest) 144 360 P-0.57 (to being solutions are at the front of the queue. The space is assumed to be) 144 346 P(a tree.) 144 332 T( . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .) 176.9 332 T( 22) 514.5 332 T(6.) 121.5 310 T(Generic algorithm for evolutionary algorithms.) 144 310 T( . . . . . . . . . . . . . . . . . . . . . . .) 374.79 310 T( 26) 514.5 310 T(7.) 121.5 290 T(The separation of structure and behavior. \050a\051 Emphasis on acquiring) 144 290 T-0.34 (structure results in creating offspring that are structurally similar but may) 144 276 P(be behaviorally incomparable. \050b\051 Emphasis on acquiring behaviors) 144 262 T(might require operators that associate dissimilar structures.) 144 248 T(. . . . . . . . . . . . . .) 431.76 248 T( 28) 514.5 248 T(8.) 121.5 226 T-0.61 (Operators used by genetic algorithms. \050a\051 single point crossover; \050b\051 point) 144 226 P(mutation; \050c\051 inversion.) 144 212 T( . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .) 260.86 212 T( 32) 514.5 212 T(9.) 121.5 190 T-0.12 (Structure of a perceptron. The binary retina feeds into a set of masks that) 144 190 P(essentially multiply their inputs. These binary variables are then) 144 176 T-0.6 (multiplied by the weights and summed. If the sum is larger than the stored) 144 162 P(threshold, then the concept represented by the preceptron appears in the) 144 148 T(retina.) 144 134 T(. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .) 179.9 134 T( 66) 514.5 134 TFMENDPAGE%%EndPage: "xi" 14%%Page: "xii" 14612 792 0 FMBEGINPAGE108 72 540 81 R7 X0 KV0 12 Q0 X(xii) 317.67 73 T108 90 540 648 R7 XV0 X(10.) 118.5 640 T(Standard connectionist architecture.) 144 640 T3 F(x1) 319.2 640 T0 F( and) 330.52 640 T3 F(x2) 353.84 640 T0 F( are inputs to the network) 365.16 640 T(and are set by the environment. Their activation is multiplied by the) 144 626 T(weight on the associated connection. A hidden or output node sums all) 144 612 T-0.14 (inputs, subtracts the threshold which is shown as a value inside the node,) 144 598 P-0.76 (and applies a sigmoid activation function to determine output. The state of) 144 584 P-0.8 (the output node is the The above network computes the exclusive-or of the) 144 570 P(inputs.) 144 556 T(. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .) 179.9 556 T( 67) 514.5 556 T(11.) 118.5 534 T(The dual representation scheme used in genetic algorithms. The) 144 534 T-0.93 (interpretation function maps between the elements in recombination space) 144 520 P-0 (on which the search is performed and the subset of structures that can be) 144 506 P(evaluated as potential task solutions.) 144 492 T(. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .) 323.82 492 T( 70) 514.5 492 T(12.) 118.5 470 T(The competing conventions problem \050Schaffer, Whitley and Eshelman) 144 470 T(1992\051. Bit strings A and B map to structurally and computationally) 144 456 T(equivalent networks that assign the hidden units in different orders.) 144 442 T(Because the bit strings are distinct, crossover is likely to produce an) 144 428 T-0.19 (offspring that contains multiple copies of the same hidden node, yielding) 144 414 P(a network with less computational ability than either parent.) 144 400 T(. . . . . . . . . . . . .) 437.76 400 T( 72) 514.5 400 T(13.) 118.5 378 T(The evolutionary programming approach to modeling evolution. Unlike) 144 378 T(genetic algorithm, evolutionary programs perform search in the space of) 144 364 T(networks. Offspring created by mutation remain within a locus of) 144 350 T(similarity to their parents.) 144 336 T( . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .) 272.85 336 T( 74) 514.5 336 T(14.) 118.5 314 T(Sample initial network. The number of input nodes \050min\051 and number of) 144 314 T-0.32 (output nodes \050mout\051 is fixed for a given task. The presence of a bias node) 144 300 P-0.31 (\050b = 0 or 1\051 as well as the maximum number of hidden units \050hmax\051 is set) 144 286 P(by the user. The initial connectivity is chosen randomly \050see text\051. The) 144 272 T(disconnected hidden node does not affect this particular network\325s) 144 258 T(computation, but is available as a resource for structural mutations.) 144 244 T( . . . . . . .) 470.74 244 T( 77) 514.5 244 T(15.) 118.5 222 T(The number of network evaluations required to learn the seven data sets) 144 222 T(of Table 3. GNARL \050using both SAE and SSE fitness measures\051) 144 208 T-0.73 (compared to the average number of evaluations for the five runs described) 144 194 P(in Watrous and Kuhn \0501992\051.) 144 180 T( . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .) 290.84 180 T( 86) 514.5 180 T(16.) 118.5 158 T(Percentage accuracy of evolved networks on languages in Table 3.) 144 158 T(GNARL \050using SAE and SSE fitness measures\051 compared to average) 144 144 T(accuracy of the five runs in Watrous and Kuhn \0501992\051.) 144 130 T( . . . . . . . . . . . . . . . . .) 410.77 130 T( 87) 514.5 130 TFMENDPAGE%%EndPage: "xii" 15%%Page: "xiii" 15612 792 0 FMBEGINPAGE108 72 540 81 R7 X0 KV0 12 Q0 X(xiii) 316 73 T108 90 540 648 R7 XV0 X(17.) 118.5 640 T-0.76 (The ant problem. Black squares indicate food while grey squares show the) 144 640 P(shortest path. The trail is connected initially, but becomes progressively) 144 626 T(more difficult to follow. The underlying 2-d grid is toroidal, so that) 144 612 T-0.16 (position \322A\323 is the first break in the trail \320 it is simple to reach this point.) 144 598 P-0.91 (Positions \322B\323 and \322C\323 indicate the only two positions along the trail where) 144 584 P(the ant discovered in run 1 behaves differently from the 5-state FSA of) 144 570 T(Jefferson et al. \0501992\051 \050see Figure 20\051.) 144 556 T( . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .) 332.82 556 T( 88) 514.5 556 T(18.) 118.5 534 T(The semantics of the I/O units for the ant network. The first input node) 144 534 T-0.07 (denotes the presence of food in the square directly in front of the ant; the) 144 520 P(second denotes the absence of food in this same square. This particular) 144 506 T(network finds 42 pieces of food before spinning endlessly in place at) 144 492 T(position P, illustrating a very deep local minimum in the search space.) 144 478 T(. . . . .) 485.73 478 T( 89) 514.5 478 T(19.) 118.5 456 T-0.42 (The Tracker Task, first run. \050a\051 The best network in the initial population.) 144 456 P(Nodes 0 and 1 are input, nodes 5-8 are output, and nodes 2-4 are hidden) 144 442 T-0.21 (nodes. \050b\051 Network induced by GNARL after 2090 generations. Forward) 144 428 P(links are dashed; bidirectional links and loops are solid. The light gray) 144 414 T(connection between nodes 8 and 13 is the sole backlink. This network) 144 400 T(clears the trail in 319 epochs.) 144 386 T(. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .) 287.84 386 T( 90) 514.5 386 T(20.) 118.5 364 T(FSA hand-crafted for the Tracker task by Jefferson et al. \0501992\051. Food is) 144 364 T-0.19 (indicated by 1, no food is indicated by 0. This simple system implements) 144 350 P-0.31 (the strategy \322move forward if there is food in front of you, otherwise turn) 144 336 P(right four times, looking for food. If food is found while turning, pursue) 144 322 T(it, otherwise, move forward one step and repeat.\323 This simple FSA) 144 308 T-0.28 (traverses the entire trail in 314 steps, and gets a score of 81 in the allotted) 144 294 P(200 time steps.) 144 280 T(. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .) 221.88 280 T( 91) 514.5 280 T(21.) 118.5 258 T(Limit behavior of the network that clears the trail in 319 steps. Graphs) 144 258 T(show the state of the output units Move, Right, Left. \050a\051 Fixed point) 144 244 T(attractor that results for sequence of 500 \322food\323 signals; \050b\051 Limit cycle) 144 230 T-0.39 (attractor that results when a sequence of 500 \322no food\323 signals is given to) 144 216 P-0.77 (network; \050c\051 All states visited while traversing the trail; \050d\051 The path of the) 144 202 P-0.19 (ant on an empty grid. The z axis represents time. Note that) 144 188 P3 F-0.19 (x) 425.49 188 P0 F-0.19 ( is fixed, and) 430.81 188 P3 F-0.65 (y) 144 174 P0 F-0.65 ( increases monotonically at a fixed rate. The large jumps in) 149.32 174 P3 F-0.65 (y) 429.32 174 P0 F-0.65 ( position are) 434.65 174 P(artifacts of the toroidal grid.) 144 160 T( . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .) 284.84 160 T( 92) 514.5 160 TFMENDPAGE%%EndPage: "xiii" 16%%Page: "xiv" 16612
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -