📄 automatic generation of fuzzy rule base for online hre .ps
字号:
3 0.5 FMFILL4 0.7 FMFILL5 0.9 FMFILL6 0.97 FMFILL7 1 FMFILL8 <0f1e3c78f0e1c387> FMFILL9 <0f87c3e1f0783c1e> FMFILL10 <cccccccccccccccc> FMFILL11 <ffff0000ffff0000> FMFILL12 <8142241818244281> FMFILL13 <03060c183060c081> FMFILL14 <8040201008040201> FMFILL16 1 FMFILL17 0.9 FMFILL18 0.7 FMFILL19 0.5 FMFILL20 0.3 FMFILL21 0.1 FMFILL22 0.03 FMFILL23 0 FMFILL24 <f0e1c3870f1e3c78> FMFILL25 <f0783c1e0f87c3e1> FMFILL26 <3333333333333333> FMFILL27 <0000ffff0000ffff> FMFILL28 <7ebddbe7e7dbbd7e> FMFILL29 <fcf9f3e7cf9f3f7e> FMFILL30 <7fbfdfeff7fbfdfe> FMFILL%%EndSetup%%Page: "1" 1%%BeginPaperSize: A4%%EndPaperSize595.3 841.9 0 FMBEGINPAGE[0 0 0 1 0 0 0][ 0 1 1 0 1 0 0][ 1 0 1 0 0 1 0][ 1 1 0 0 0 0 1][ 1 0 0 0 0 1 1][ 0 1 0 0 1 0 1][ 0 0 1 0 1 1 0] 7 FrameSetSepColorsFrameNoSep0 0 0 1 0 0 0 KJ0 0 0 1 0 0 0 K0 0 0 1 0 0 0 K0 0 0 1 0 0 0 K0 0 0 1 0 0 0 K0 0 0 1 0 0 0 K0 9 Q0 X0 0 0 1 0 0 0 K0.65 (Pub) 63.65 792.95 P0.65 (lished in the Proceedings of the Second European Cong) 79.48 792.95 P0.65 (ress on Intelligent T) 308.73 792.95 P0.65 (ech-) 388.14 792.95 P(niques and Soft Computing \050EUFIT\051, Aachen, pp) 63.65 779.95 T(. 1060-1065, 1994.) 256.92 779.95 T1 14 Q(Automatic Generation of a Fuzzy Rule Base for Online) 99.83 744.62 T(Handwriting Recognition) 206.23 724.62 T2 12 Q(Ashutosh Malaviya, Hartmut Surmann and Liliane Peters) 128.69 691.95 T3 10 Q(Ger) 147.7 674.29 T(man National Resear) 165.07 674.29 T(ch Center for Computer Science \050GMD\051) 265.79 674.29 T(Schlo\247 Birlinghoven, 53754 St. Augustin, Ger) 175.66 662.29 T(many) 392.43 662.29 T(Ashutosh.Malaviya@gmd.de) 229.75 650.29 T130.05 593.29 72.65 593.29 2 LV0.5 H0 ZN1 F(ABSTRACT) 72.65 594.29 T3.52 (An automatic method to generate fuzzy) 72.65 577.29 P2.72 (rules and their membership functions to) 72.65 563.29 P12.5 (r) 72.65 549.29 P12.5 (ecognize handwritten characters is) 77.15 549.29 P-0.27 (described. Firstly an initial rule base is cr) 72.65 535.29 P-0.27 (e-) 288.25 535.29 P1.35 (ated on the basis of a r) 72.65 521.29 P1.35 (efer) 200.05 521.29 P1.35 (ential data set) 219.95 521.29 P0.96 (containing handwriting pr) 72.65 507.29 P0.96 (ototypes. Subse-) 210.88 507.29 P2 (quently the classi\336cation behavior of the) 72.65 493.29 P3.87 (fuzzy rules is optimized with a genetic) 72.65 479.29 P2.17 (algorithm, which is r) 72.65 465.29 P2.17 (egar) 187.85 465.29 P2.17 (ded as a typical) 209.75 465.29 P1.46 (solution to NP-complete pr) 72.65 451.29 P1.46 (oblems. A suit-) 217.13 451.29 P0.58 (able \336tness function which corr) 72.65 437.29 P0.58 (esponds to) 240.87 437.29 P4.54 (the human per) 72.65 423.29 P4.54 (ception of the linguistic) 158.43 423.29 P3.46 (variables is obtained. The pr) 72.65 409.29 P3.46 (oposed rule) 234.19 409.29 P3.97 (generation pr) 72.65 395.29 P3.97 (ocess extends the lear) 146.73 395.29 P3.97 (ning) 274.65 395.29 P1.16 (and adaptive capabilities of existing fuzzy) 72.65 381.29 P(rule based r) 72.65 367.29 T(ecognition system.) 133.55 367.29 T1.73 (Keywor) 72.65 349.29 P1.73 (ds:) 111.35 349.29 P3 F1.53 ( fuzzy featur) 126.35 349.29 P1.53 (es, fuzzy rule genera-) 189.86 349.29 P(tion, genetic algorithm) 72.65 335.29 T1 F(.) 178.25 335.29 T1 12 Q(1.0) 72.65 296.95 T(INTRODUCTION) 99.65 296.95 T2 10 Q0.83 (Online character r) 72.65 276.29 P0.83 (ecognition systems have to) 163.97 276.29 P1.22 (operate in r) 72.65 262.29 P1.22 (eal-time and have to cope with a) 131.75 262.29 P4.77 (multiple number of users. These r) 72.65 248.29 P4.77 (equir) 263.18 248.29 P4.77 (e-) 288.45 248.29 P(ments can only be ful\336lled if) 72.65 234.29 T0.64 (i\051 number of character pr) 72.65 216.29 P0.64 (ototypes is r) 198.49 216.29 P0.64 (educed,) 259.65 216.29 P(and simultaneously) 83.45 202.29 T1.37 (ii\051 classi\336cation method is \337exible enough to) 72.65 184.29 P4.98 (match various characters fr) 83.45 170.29 P4.98 (om multiple) 234.07 170.29 P(users.) 83.45 156.29 T1.68 (The pr) 72.65 138.29 P1.68 (oposed scheme achieve these r) 106.2 138.29 P1.68 (equir) 263.18 138.29 P1.68 (e-) 288.45 138.29 P1.75 (ments with the \337exible and ef) 72.65 124.29 P1.75 (\336cient genera-) 226.1 124.29 P-0.09 (tion of a fuzzy rule base \050FRB\051. The pr) 72.65 110.29 P-0.09 (ototypes) 256.85 110.29 P1.3 (ar) 72.65 96.29 P1.3 (e r) 82.92 96.29 P1.3 (epr) 97.09 96.29 P1.3 (esented by linguistic fuzzy rules and) 112.96 96.29 P0.18 (the r) 306.65 594.29 P0.18 (equir) 330.1 594.29 P0.18 (ed \337exibility is obtained by the vari-) 355.37 594.29 P0.43 (able width of the membership functions. Real) 306.65 580.29 P1.75 (time classi\336cation of handwritten characters) 306.65 566.29 P0.9 (is achieved by limited number of rules and a) 306.65 552.29 P0.92 (fast pr) 306.65 538.29 P0.92 (ocessing algorithm [9]. In this applica-) 339.45 538.29 P6.43 (tion the syntactic r) 306.65 524.29 P6.43 (elations between the) 418.6 524.29 P3.17 (extracted featur) 306.65 510.29 P3.17 (es in the for) 387.49 510.29 P3.17 (m of linguistic) 455.71 510.29 P0.2 (rules have been utilized to describe the hand-) 306.65 496.29 P(written characters.) 306.65 482.29 T0.56 (The paper is or) 306.65 464.29 P0.56 (ganized as follows: in the next) 381.87 464.29 P1.86 (section an outline of the fuzzy online hand-) 306.65 450.29 P4.93 (writing r) 306.65 436.29 P4.93 (ecognition system \050FOHRES\051[6] is) 353.25 436.29 P2.23 (given. Section 3 handles with the de\336nition) 306.65 422.29 P0.89 (and syntax of the fuzzy rule base. In the two) 306.65 408.29 P0.3 (subsequent sections initialization and optimi-) 306.65 394.29 P6.66 (zation of the fuzzy rule base \050FRB\051 is) 306.65 380.29 P1.55 (explained. The last section pr) 306.65 366.29 P1.55 (esents some of) 456.74 366.29 P(the experimental r) 306.65 352.29 T(esults.) 396.52 352.29 T1 12 Q(2.0) 306.65 313.95 T(Outline of the FOHRES System) 333.65 313.95 T2 10 Q0.92 (The human visual system functions success-) 306.65 293.29 P2.85 (fully even when patter) 306.65 279.29 P2.85 (ns possess a certain) 424.1 279.29 P5.98 (vagueness, slight mismatch and impr) 306.65 265.29 P5.98 (eci-) 514.25 265.29 P3.13 (sion[11]. It is able to select those featur) 306.65 251.29 P3.13 (es) 521.25 251.29 P1.22 (which identify the patter) 306.65 237.29 P1.22 (n while ignoring the) 430.6 237.29 P1.88 (r) 306.65 223.29 P1.88 (est of the uncertainties. Based on this fact) 311.12 223.29 P-0.31 (we have applied the theory of fuzzy logic to the) 306.65 209.29 P5.33 (r) 306.65 195.29 P5.33 (ecognition pr) 311.12 195.29 P5.33 (ocess. Our solution for the) 380.33 195.29 P1.81 (online handwriting r) 306.65 181.29 P1.81 (ecognition pr) 410.34 181.29 P1.81 (oblem esti-) 476.04 181.29 P3.15 (mates the impr) 306.65 167.29 P3.15 (ecision or the vagueness of) 387.43 167.29 P2.32 (acquir) 306.65 153.29 P2.32 (ed handwritten symbols in thr) 337.72 153.29 P2.32 (ee pr) 495.45 153.29 P2.32 (o-) 522.05 153.29 P0.75 (cessing stages, pr) 306.65 139.29 P0.75 (epr) 394.81 139.29 P0.75 (ocessing, featur) 410.69 139.29 P0.75 (e extrac-) 488.5 139.29 P2.4 (tion and rule generation/classi\336cation [6][8]) 306.65 125.29 P0.76 (and subsequently with suitable actions these) 306.65 111.29 P3.13 (uncertainties ar) 306.65 97.29 P3.13 (e r) 387.85 97.29 P3.13 (educed or eradicated. In) 403.85 97.29 PFMENDPAGE%%EndPage: "1" 1%%Page: "2" 2595.3 841.9 0 FMBEGINPAGE[0 0 0 1 0 0 0][ 0 1 1 0 1 0 0][ 1 0 1 0 0 1 0][ 1 1 0 0 0 0 1][ 1 0 0 0 0 1 1][ 0 1 0 0 1 0 1][ 0 0 1 0 1 1 0] 7 FrameSetSepColorsFrameNoSep0 0 0 1 0 0 0 K0 0 0 1 0 0 0 K0 0 0 1 0 0 0 K0 0 0 1 0 0 0 K2 9 Q0 X0 0 0 1 0 0 0 K(Fig 1. Outline of the FOHRES) 232.67 558.95 T63.65 537.95 531.65 762.95 C97.4 580.95 497.9 752.95 C0 0 0 1 0 0 0 K0 0 0 1 0 0 0 K222.43 599.95 483.43 743.95 R4 X0 0 0 1 0 0 0 KV1 H2 Z0 XN1 14 Q(FOHRES) 327.99 725.58 T106.4 705.36 204.93 722.21 R7 XV1 XN106.4 621.16 204.93 705.36 R7 XV0.5 H0 XN142.89 680.1 M 106.4 680.1 106.4 680.1 124.64 671.68 D 142.89 663.26 142.89 663.26 133.77 654.84 D 124.64 646.42 124.64 646.42 161.14 646.42 D7 XV1 H0 XN183.03 654.84 M 161.14 654.84 175.26 672.85 183.03 671.68 D7 XV0 XN182.86 681.14 M 172.08 686.2 191.46 688.53 190.8 681.47 D 190.15 674.58 189.23 671.68 202.48 673.21 D7 XV0 XN139.24 634.98 M 128.29 634.98 135.35 643.4 139.24 642.85 D7 XV0 XN1 12 Q(=) 145.16 635.82 T155.66 638.98 M 161.12 631.95 161.14 646.42 155.74 639.44 D7 XV0 XN107.49 688.53 118.44 691.48 118.44 685.57 118.44 691.48 4 L7 XV0 XN255.02 612.74 225.46 587.48 284.57 536.95 314.14 562.22 4 Y14 XV0 XN2 10 Q(PENTOP) 135.07 710.45 T143.78 690.68 M 145.81 689.48 141.98 683.47 136.79 687.54 D 133.99 689.74 139.55 693.58 143.57 690.68 D7 XV0 XN133.61 691.02 M 135.96 689.63 131.53 682.69 125.54 687.39 D 122.3 689.93 128.72 694.36 133.37 691.02 D7 XV0 XN196.98 637.08 204.67 630.51 2 L7 XV3 XN211.76 612.13 M 226.18 587.48 226.18 587.48 240.6 599.8 D 255.02 612.13 255.02 612.13 226.18 624.45 D 197.34 636.77 197.34 636.77 211.76 612.13 DO6 XV0 XN7 X90 450 2.46 2.11 200.82 633.79 G1 X90 450 2.46 2.11 200.82 633.79 A172.5 646.42 200.82 663.26 2 L7 XV1 Z0 XN186.89 646.51 M 181.94 651.68 195.5 654.84 195.33 649.09 D 194.99 638 210.27 642.54 194.99 638 D7 XV0 XN240.43 655.08 341.68 718.69 R7 XV0.5 H2 Z0 XN(FUZZY) 274.36 702.74 T(-Pr) 255.1 684.23 T(epr) 269.77 684.23 T(ocessing) 285.65 684.23 T(-Segmentation) 255.57 675.48 T369.3 655.08 470.55 718.69 R7 XV0 XN(FRB) 409.43 702.74 T286.45 605.15 433.73 636.91 R7 XV0 XN(CLASSIFICA) 317.2 615.77 T(TION) 378.02 615.77 T(-Generation) 389.24 684.56 T356.29 682.34 358.01 685.32 368.39 682.34 358.01 679.37 4 Y0 ZN356.29 682.34 358.01 685.32 368.39 682.34 358.01 679.37 4 YV341.68 682.34 357.76 682.34 2 L7 XV2 Z0 XN396.91 648.76 399.89 647.04 396.91 636.66 393.93 647.04 4 Y0 ZN396.91 648.76 399.89 647.04 396.91 636.66 393.93 647.04 4 YV396.91 655.08 396.91 647.29 2 L7 XV2 Z0 XN227.42 680.95 229.14 683.93 239.52 680.95 229.14 677.98 4 Y0 ZN227.42 680.95 229.14 683.93 239.52 680.95 229.14 677.98 4 YV204.43 680.95 228.89 680.95 2 L7 XV2 Z0 XN304.86 649.91 307.84 648.19 304.86 637.82 301.89 648.19 4 Y0 ZN304.86 649.91 307.84 648.19 304.86 637.82 301.89 648.19 4 YV304.86 655.08 304.86 648.44 2 L7 XV2 Z0 XN(-Optimization) 386.44 675.48 T(-Featur) 243.15 666.39 T(e Extraction) 279.61 666.39 T(-Adaptation) 391.14 666.39 T415.32 642.08 412.35 643.8 415.32 654.18 418.3 643.8 4 Y0 ZN415.32 642.08 412.35 643.8 415.32 654.18 418.3 643.8 4 YV415.32 636.91 415.32 643.55 2 L7 XV2 Z0 XN(Diagnosis) 421.08 639.14 T(\050Fuzzy RuleBase\051) 378.35 692.74 T63.65 537.95 531.65 762.95 C-8.35 24.95 603.65 816.95 C2 10 Q0 X0 0 0 1 0 0 0 K2.13 (the pr) 72.65 513.29 P2.13 (epr) 104.25 513.29 P2.13 (ocessing stage low level uncertain-) 120.13 513.29 P0.98 (ties e.g. pentop err) 72.65 499.29 P0.98 (ors, ar) 167.06 499.29 P0.98 (e eliminated. In the) 199.91 499.29 P5.75 (next stage these symbols ar) 72.65 485.29 P5.75 (e segmented) 231.3 485.29 P2.65 (accor) 72.65 471.29 P2.65 (ding to the sudden changes and local) 98.92 471.29 P6.03 (minima. Henceforth in the fuzzy featur) 72.65 457.29 P6.03 (e) 292.45 457.29 P2.6 (extraction stage, geometrical and other fea-) 72.65 443.29 P1.45 (tur) 72.65 429.29 P1.45 (es \050e.g. a) 87.72 429.29 P3 F1.36 (vertical line) 137.86 429.29 P2 F1.45 ( at) 194.21 429.29 P3 F1.36 (lef) 213.11 429.29 P2 F1.45 (t,) 224.71 429.29 P3 F1.36 (thin) 236.35 429.29 P2 F1.45 ( or) 254.95 429.29 P3 F1.36 (wide) 274.25 429.29 P4.57 (symbol, C-Like or D-Like curves) 72.65 415.29 P2 F4.87 ([6]\051 of the) 241.91 415.29 P1.57 (acquir) 72.65 401.29 P1.57 (ed symbol ar) 103.72 401.29 P1.57 (e deter) 169.74 401.29 P1.57 (mined in the for) 204.82 401.29 P1.57 (m) 288.25 401.29 P3.68 (of fuzzy membership functions [12]. These) 72.65 387.29 P4.96 (featur) 72.65 373.29 P4.96 (es ar) 101.92 373.29 P4.96 (e further pr) 130.74 373.29 P4.96 (ocessed with fuzzy) 197.34 373.29 P0.2 (operations \050max,) 72.65 359.29 P4 F0.16 (a) 157.85 359.29 P2 F0.2 (-cut etc.\051 to r) 164.16 359.29 P0.2 (educe the fea-) 228.44 359.29 P2.62 (tur) 72.65 345.29 P2.62 (e set for computational ease in the rule) 87.72 345.29 P1.55 (generation/classi\336cation stage. Scope of this) 72.65 331.29 P-0.07 (paper is limited to the \336nal stage i.e. rule gen-) 72.65 317.29 P1.78 (eration and classi\336cation fr) 72.65 303.29 P1.78 (om the extracted) 211.88 303.29 P(fuzzy featur) 72.65 289.29 T(es.) 130.12 289.29 T0.5 (In the classi\336cation stage vagueness exists in) 72.65 271.29 P0.71 (the syntactical interpr) 72.65 257.29 P0.71 (etation of the extracted) 182.53 257.29 P1.22 (featur) 72.65 243.29 P1.22 (es and fuzzy rules. This ambiguity can) 101.92 243.29 P2.58 (be ter) 72.65 229.29 P2.58 (med as syntactic vagueness. However) 103.54 229.29 P-0.01 (this implies that the acquir) 72.65 215.29 P-0.01 (ed fuzzy structural) 205.67 215.29 P3.43 (elements have certain corr) 72.65 201.29 P3.43 (espondence with) 212.62 201.29 P0.53 (each other) 72.65 187.29 P0.53 (. But this corr) 124.14 187.29 P0.53 (espondence does not) 194.79 187.29 P1.76 (always have unequivocal meanings and sec-) 72.65 173.29 P1.84 (ondly it is dif) 72.65 159.29 P1.84 (\336cult for a human to generate) 142.25 159.29 P1.68 (enor) 72.65 145.29 P1.68 (mous syntactic de\336nitions manually. T) 94.76 145.29 P1.68 (o) 292.05 145.29 P4.43 (over) 72.65 131.29 P4.43 (come these syntactical ambiguities we) 93.12 131.29 P0.67 (have employed the genetic algorithms to gen-) 72.65 117.29 P-0.17 (erate and optimize fuzzy linguistic rules in the) 72.65 103.29 P0 0 0 1 0 0 0 K0 0 0 1 0 0 0 K0 0 0 1 0 0 0 K0 0 0 1 0 0 0 K0 0 0 1 0 0 0 K0 0 0 1 0 0 0 K0 0 0 1 0 0 0 K0 0 0 1 0 0 0 K0 0 0 1 0 0 0 K0 0 0 1 0 0 0 K0 0 0 1 0 0 0 K0 0 0 1 0 0 0 K1.44 (for) 306.65 513.29 P1.44 (m of a knowledge base or fuzzy rule base) 320.16 513.29 P(\050FRB\051 automatically[10].) 306.65 499.29 T2.27 (The FRB generation is accomplished in two) 306.65 481.29 P1.9 (phases. In the \336rst phase a fuzzy rule base) 306.65 467.29 P4.43 (\050FRB\051 is initialized with a combination of) 306.65 453.29 P1.44 (expert knowledge and some stochastic infor-) 306.65 439.29 P3.67 (mation. Afterwar) 306.65 425.29 P3.67 (ds this knowledge base is) 392.38 425.29 P-0.15 (optimized to i
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -