⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pca.m

📁 A toolbox for the non-local means algorithm
💻 M
字号:
function [Y,X1,v,Psi] = pca(X,numvecs, options)% pca - compute the principal component analysis.%%   [Y,X1,v,Psi] = pca(X,numvecs)%%   X is a matrix of size dim x p of data points.%   X1 is the matrix of size numvecs x p (projection on the numvect first eigenvectors)%	Y the matrix  of size dim x numvecs of numvecs first eigenvector of the correlation matrix X*X'%		(this matrix is computed using the traditional flipping trick if p is large).%	v is the vector of size numvecs of eigenvalues.%   Psi is the mean.%%   Warning: the mean of X is substracted before computing the covariance%   matrix.%%   You can use an iterative algorithm based %   on expectation maximization by setting%       options.use_em = 1;%   if you want a fast estimation of a few eigenvectors.%   This algorithm use the code of Sam Roweis%       Sam Roweis, "EM Algorithms for PCA and SPCA",%       Neural Information Processing Systems 10 (NIPS'97) pp.626-632%       http://www.cs.toronto.edu/~roweis/code.html%%   Copyright (c) 2006 Gabriel Peyr

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -