⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bpn.c

📁 一个用C语言实现的ANN的BPN算法代码
💻 C
📖 第 1 页 / 共 2 页
字号:

void RandomWeights(NET* Net)
{
  INT l,i,j;
   
  for (l=1; l<NUM_LAYERS; l++) {
    for (i=1; i<=Net->Layer[l]->Units; i++) {
      for (j=0; j<=Net->Layer[l-1]->Units; j++) {
        Net->Layer[l]->Weight[i][j] = RandomEqualREAL(-0.5, 0.5);
      }
    }
  }
}


void SetInput(NET* Net, REAL* Input)
{
  INT i;
   
  for (i=1; i<=Net->InputLayer->Units; i++) {
    Net->InputLayer->Output[i] = Input[i-1];
  }
}


void GetOutput(NET* Net, REAL* Output)
{
  INT i;
   
  for (i=1; i<=Net->OutputLayer->Units; i++) {
    Output[i-1] = Net->OutputLayer->Output[i];
  }
}


/******************************************************************************
            S U P P O R T   F O R   S T O P P E D   T R A I N I N G
 ******************************************************************************/


void SaveWeights(NET* Net)
{
  INT l,i,j;

  for (l=1; l<NUM_LAYERS; l++) {
    for (i=1; i<=Net->Layer[l]->Units; i++) {
      for (j=0; j<=Net->Layer[l-1]->Units; j++) {
        Net->Layer[l]->WeightSave[i][j] = Net->Layer[l]->Weight[i][j];
      }
    }
  }
}


void RestoreWeights(NET* Net)
{
  INT l,i,j;

  for (l=1; l<NUM_LAYERS; l++) {
    for (i=1; i<=Net->Layer[l]->Units; i++) {
      for (j=0; j<=Net->Layer[l-1]->Units; j++) {
        Net->Layer[l]->Weight[i][j] = Net->Layer[l]->WeightSave[i][j];
      }
    }
  }
}


/******************************************************************************
                     P R O P A G A T I N G   S I G N A L S
 ******************************************************************************/


void PropagateLayer(NET* Net, LAYER* Lower, LAYER* Upper)
{
  INT  i,j;
  REAL Sum;

  for (i=1; i<=Upper->Units; i++) {
    Sum = 0;
    for (j=0; j<=Lower->Units; j++) {
      Sum += Upper->Weight[i][j] * Lower->Output[j];
    }
    Upper->Output[i] = 1 / (1 + exp(-Net->Gain * Sum));
  }
}


void PropagateNet(NET* Net)
{
  INT l;
   
  for (l=0; l<NUM_LAYERS-1; l++) {
    PropagateLayer(Net, Net->Layer[l], Net->Layer[l+1]);
  }
}


/******************************************************************************
                  B A C K P R O P A G A T I N G   E R R O R S
 ******************************************************************************/


void ComputeOutputError(NET* Net, REAL* Target)
{
  INT  i;
  REAL Out, Err;
   
  Net->Error = 0;
  for (i=1; i<=Net->OutputLayer->Units; i++) {
    Out = Net->OutputLayer->Output[i];
    Err = Target[i-1]-Out;
    Net->OutputLayer->Error[i] = Net->Gain * Out * (1-Out) * Err;
    Net->Error += 0.5 * sqr(Err);
  }
}


void BackpropagateLayer(NET* Net, LAYER* Upper, LAYER* Lower)
{
  INT  i,j;
  REAL Out, Err;
   
  for (i=1; i<=Lower->Units; i++) {
    Out = Lower->Output[i];
    Err = 0;
    for (j=1; j<=Upper->Units; j++) {
      Err += Upper->Weight[j][i] * Upper->Error[j];
    }
    Lower->Error[i] = Net->Gain * Out * (1-Out) * Err;
  }
}


void BackpropagateNet(NET* Net)
{
  INT l;
   
  for (l=NUM_LAYERS-1; l>1; l--) {
    BackpropagateLayer(Net, Net->Layer[l], Net->Layer[l-1]);
  }
}


void AdjustWeights(NET* Net)
{
  INT  l,i,j;
  REAL Out, Err, dWeight;
   
  for (l=1; l<NUM_LAYERS; l++) {
    for (i=1; i<=Net->Layer[l]->Units; i++) {
      for (j=0; j<=Net->Layer[l-1]->Units; j++) {
        Out = Net->Layer[l-1]->Output[j];
        Err = Net->Layer[l]->Error[i];
        dWeight = Net->Layer[l]->dWeight[i][j];
        Net->Layer[l]->Weight[i][j] += Net->Eta * Err * Out + Net->Alpha * dWeight;
        Net->Layer[l]->dWeight[i][j] = Net->Eta * Err * Out;
      }
    }
  }
}


/******************************************************************************
                      S I M U L A T I N G   T H E   N E T
 ******************************************************************************/


void SimulateNet(NET* Net, REAL* Input, REAL* Output, REAL* Target, BOOL Training)
{
  SetInput(Net, Input);
  PropagateNet(Net);
  GetOutput(Net, Output);
   
  ComputeOutputError(Net, Target);
  if (Training) {
    BackpropagateNet(Net);
    AdjustWeights(Net);
  }
}


void TrainNet(NET* Net, INT Epochs)
{
  INT  Year, n;
  REAL Output[M];

  for (n=0; n<Epochs*TRAIN_YEARS; n++) {
    Year = RandomEqualINT(TRAIN_LWB, TRAIN_UPB);
    SimulateNet(Net, &(Sunspots[Year-N]), Output, &(Sunspots[Year]), TRUE);
  }
}


void TestNet(NET* Net)
{
  INT  Year;
  REAL Output[M];

  TrainError = 0;
  for (Year=TRAIN_LWB; Year<=TRAIN_UPB; Year++) {
    SimulateNet(Net, &(Sunspots[Year-N]), Output, &(Sunspots[Year]), FALSE);
    TrainError += Net->Error;
  }
  TestError = 0;
  for (Year=TEST_LWB; Year<=TEST_UPB; Year++) {
    SimulateNet(Net, &(Sunspots[Year-N]), Output, &(Sunspots[Year]), FALSE);
    TestError += Net->Error;
  }
  fprintf(f, "\nNMSE is %0.3f on Training Set and %0.3f on Test Set",
             TrainError / TrainErrorPredictingMean,
             TestError / TestErrorPredictingMean);
}


void EvaluateNet(NET* Net)
{
  INT  Year;
  REAL Output [M];
  REAL Output_[M];

  fprintf(f, "\n\n\n");
  fprintf(f, "Year    Sunspots    Open-Loop Prediction    Closed-Loop Prediction\n");
  fprintf(f, "\n");
  for (Year=EVAL_LWB; Year<=EVAL_UPB; Year++) {
    SimulateNet(Net, &(Sunspots [Year-N]), Output,  &(Sunspots [Year]), FALSE);
    SimulateNet(Net, &(Sunspots_[Year-N]), Output_, &(Sunspots_[Year]), FALSE);
    Sunspots_[Year] = Output_[0];
    fprintf(f, "%d       %0.3f                   %0.3f                     %0.3f\n",
               FIRST_YEAR + Year,
               Sunspots[Year],
               Output [0],
               Output_[0]);
  }
}


/******************************************************************************
                                    M A I N
 ******************************************************************************/


void main()
{
  NET  Net;
  BOOL Stop;
  REAL MinTestError;

  InitializeRandoms();
  GenerateNetwork(&Net);
  RandomWeights(&Net);
  InitializeApplication(&Net);

  Stop = FALSE;
  MinTestError = MAX_REAL;
  do {
    TrainNet(&Net, 10);
    TestNet(&Net);
    if (TestError < MinTestError) {
      fprintf(f, " - saving Weights ...");
      MinTestError = TestError;
      SaveWeights(&Net);
    }
    else if (TestError > 1.2 * MinTestError) {
      fprintf(f, " - stopping Training and restoring Weights ...");
      Stop = TRUE;
      RestoreWeights(&Net);
    }
  } while (NOT Stop);

  TestNet(&Net);
  EvaluateNet(&Net);
   
  FinalizeApplication(&Net);
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -