⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rand.asm

📁 包含几个高效的矢量运算的数学函数
💻 ASM
字号:
;;============================================================================
;;History:	mm/dd/yy | Who     | Description Of Changes.
;;		      ---------+---------+------------------------------------------
;;	         09/30/93 | Eric W. | Original draft.
;;	         01/03/96 | Alex T. | Optimized code.
;;          09/01/97 | Jeff A. | Vectorized code.
;;============================================================================

;;============================================================================
;;
;; Module Names: InitRand16, Rand16 	
;;
;;----------------------------------------------------------------------------
;;
;; Usage ASM:	 To initialize:
;;
;;			call 	InitRand16
;;
;;		 To get	the next random	number:
;;
;;			call 	Rand16
;;
;;----------------------------------------------------------------------------
;;
;; Input:	rndnum
;;
;; Modifies:	SPM
;;		OVM
;;		DP
;;		P
;;		T
;;
;; Output:	ACCL = rndnum =	16-bit Random Number
;;		ACCH = 0
;;
;;----------------------------------------------------------------------------
;;
;; Algorithm:	 rndnum(n) = ((rndnum(n-1) * RNDMULT) +	RNDINC)	MOD M
;;
;;		 where:		 M = modulus (set at 65536, i.e. 64K)
;;				 n = 2 to ??? (number of random	#s generated)
;;			 rndnum(1) = RNDSEED (arbitrary	constant)
;;			 RNDMULT   = multiplier	(unique	constant)
;;			 RNDINC	   = increment value (unique constant)
;;
;; Description:	 This algorithm	is called the "Linear Congruential Method"
;;		 introduced by D. Lehmer in 1951.  Many	random number
;;		 generators exist, but this method is arguably the fastest
;;		 for a 16-bit value.  If a 32-bit value	is needed, the code
;;		 can be	modified by performing a 32-bit	multiply and using
;;		 32-bit	constants (RNDMULT, RNDINC).  This method, however,
;;		 does have one major disadvantage:  it is VERY sensitive to
;;		 the values of RNDMULT and RNDINC.
;;
;;		 Much research has been	done to	identify the optimal choices
;;		 of these constants to avoid degeneration.  The	constants used
;;		 in the	subroutine below were chosen based on this research.
;;		 Extreme care must be taken if changes to the original
;;		 constants are made:
;;
;;		 M:  The modulus value.	 This routine returns a	random number
;;		 -   from 0 to 65536 (64K) and is NOT internally bounded.  If
;;		     the user needs a min/max limit, this must be coded
;;		     externally	to this	routine.
;;
;;		 RNDSEED:  An arbitrary	constant.  Can be chosen to be any
;;		 -------   value representable by the uP (0-64K).  If 0	(zero)
;;			   is chosen, RNDINC should be some larger value than
;;			   1.  Otherwise, the first two	values will be 0 and 1.
;;			   This	is ok if the generator is given	three cycles
;;			   to "warm up".  To change the	set of random numbers
;;			   generated by	this routine, simply change the
;;			   RNDSEED value.  RNDSEED=21845 is used in this
;;			   routine because it is 65536/3.
;;
;;		 RNDMULT:  Should be chosen such that the last three digits
;;		 -------   are even-2-1	(such as xx821,	x421, etc).
;;			   RNDMULT=31821 is used in this routine.
;;
;;		 RNDINC:   In general, this constant can be any	prime number
;;		 ------	   related to M	(or 64K	in this	case).	Two values
;;			   were	actually tested:  1 and	13849.	Research
;;			   shows that RNDINC (the increment value) should be
;;			   chosen by the following formula:
;;
;;			   RNDINC = ((1/2 - (1/6 * SQRT(3))) * M)
;;
;;			   Using M=65536: RNDINC=13849 (as indicated above).
;;			   RNDINC=1 was	also tested and	works fine.
;;			   RNDINC=13849	is used	in this	routine.
;;
;;		 8-bit #:  If an 8-bit number is desired (0-255), the lower or
;;		 -------   higher byte of the low accumulator can be used.
;;			   However, the	"randomness" or	"uniqueness" of	each
;;			   number is NOT guaranteed.  When choosing only 8
;;			   bits	out of 16, duplications	might exist.
;;			   Therefore, it is NOT	recommended to a portion of
;;			   the 16-bit result to	implement scaling.  Scaling
;;			   should be done mathematically external to this
;;			   routine.
;;
;;		 CAUTION:  This	routine	can only be used for 16-bit values.
;;		 -------   Do not use for 32-bit values	(upper half of ACC
;;			   is not necessarily random because only the lower
;;			   half	is saved from the previous result).  Do	NOT
;;			   save	the result with	a shift	(e.g. SACL RndNum,1) -
;;			   the algorithm immediately degenerates.
;;
;;============================================================================
                  
;;
;; MEMORY REFERENCES:
;;

;;
;; DEFINE CONSTANTS:
;;

RNDMULT	.set	31821		; Multiplier value
RNDINC	.set	13849		; Increment value

;;
;; Generate Next Random Number:
;;

	.include "ccall.asm"
	
	.ref rndnum
	.def	_ti_rand
_ti_rand:
	pre_ccall 2,AR_Z,AR_N

	; Modify any registers needed
	; Note: Overflow mode is off in C.
; End C Preprocessing

	ldp #rndnum         ; set data page to point to RndNum
	lt rndnum          ; TREG = previous rndnum

	; Local variables
	; N%8 - stack[0]
	; N/8 - stack[1]
	

; Compute N%7 to make N divisible by 8 in the unrolled loop	
	sar AR_N,*			; stack[0]=N         
	lacl *+				; acc=N
	and #07h			; acc&=0111b - Unroll 8 iterations
	sacl *-				; stack[1] = N % 0111b
	lacc *,13			; acch=N>>3
	sach *+				; stack[0]=N>>3
	lar AR_N,*+,AR_N	; AR_N = stack[1] = N%7
	banz NEXT0,AR_Z		; Skip loop if AR_N = 0
	b NEXT1
	
NEXT0:
	splk	#RNDMULT,rndnum	; Store temporarely in rndnum
	mpy	rndnum		; PREG = rndnum * RNDMULT
	pac			; ACC  = rndnum * RNDMULT
	add	#RNDINC		; ACC  = (rndnum * RNDMULT) + RNDINC
	sacl * ; Store result
	lt *+,AR_N ; TREG = previous rndnum
	banz NEXT0,AR_Z

NEXT1:
	mar *,AR_STACK
	sbrk #2				; SP=stack[0]
	lar AR_N,*+	 		; AR_N = stack[0]=N>>3 
	mar *-,AR_N			; SP=stack[1]
	banz NEXT2,AR_Z		; Go to 8x loop if AR_X > 0
	b DONE

NEXT2:
	; z[AR_Z++]=x[AR_X++]*y[AR_K++]
	.loop 7
	splk	#RNDMULT,rndnum	; Store temporarely in rndnum
	mpy	rndnum		; PREG = rndnum * RNDMULT
	pac			; ACC  = rndnum * RNDMULT
	add	#RNDINC		; ACC  = (rndnum * RNDMULT) + RNDINC
	sacl * ; Store result
	lt *+ ; TREG = previous rndnum
	.endloop
	splk	#RNDMULT,rndnum	; Store temporarely in rndnum
	mpy	rndnum		; PREG = rndnum * RNDMULT
	pac			; ACC  = rndnum * RNDMULT
	add	#RNDINC		; ACC  = (rndnum * RNDMULT) + RNDINC
	sacl * ; Store result
	lt *+,AR_N ; TREG = previous rndnum
	; while(AR_N--)
	banz NEXT2,AR_Z

	mar *-
	lacl *,AR_STACK	; Save last random number
	sacl	rndnum		; rndnum = ACC
	
				; SP=stack[1]

; Begin C Post Processing
DONE:
	post_ccall 2

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -