⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 assignmentoptimal.m

📁 Munkres algorithm的matlab实现
💻 M
字号:
function [assignment, cost] = assignmentoptimal(distMatrix)
%ASSIGNMENTOPTIMAL    Compute optimal assignment by Munkres algorithm
%		ASSIGNMENTOPTIMAL(DISTMATRIX) computes the optimal assignment (minimum
%		overall costs) for the given rectangular distance or cost matrix, for
%		example the assignment of tracks (in rows) to observations (in
%		columns). The result is a column vector containing the assigned column
%		number in each row (or 0 if no assignment could be done).
%
%		[ASSIGNMENT, COST] = ASSIGNMENTOPTIMAL(DISTMATRIX) returns the
%		assignment vector and the overall cost.
%
%		The distance matrix may contain infinite values (forbidden
%		assignments). Internally, the infinite values are set to a very large
%		finite number, so that the Munkres algorithm itself works on
%		finite-number matrices. Before returning the assignment, all
%		assignments with infinite distance are deleted (i.e. set to zero).
%
%		A description of Munkres algorithm (also called Hungarian algorithm)
%		can easily be found on the web.
%
%		Markus Buehren
%		Last modified 30.01.2008

% save original distMatrix for cost computation
originalDistMatrix    = distMatrix;

% check for negative elements
if any(distMatrix(:) < 0)
	error('All matrix elements have to be non-negative.');
end

% get matrix dimensions
[nOfRows, nOfColumns] = size(distMatrix);

% check for infinite values
finiteIndex   = isfinite(distMatrix);
infiniteIndex = find(~finiteIndex);
if ~isempty(infiniteIndex)
	% set infinite values to large finite value
	maxFiniteValue = max(max(distMatrix(finiteIndex)));
	if maxFiniteValue > 0
		infValue = abs(10 * maxFiniteValue * nOfRows * nOfColumns);
	else
		infValue = 10;
	end
	if isempty(infValue)
		% all elements are infinite
		assignment = zeros(nOfRows, 1);
		cost       = 0;
		return
	end	
	distMatrix(infiniteIndex) = infValue;
end

% memory allocation
coveredColumns = zeros(1,nOfColumns);
coveredRows    = zeros(nOfRows,1);
starMatrix     = zeros(nOfRows, nOfColumns);
primeMatrix    = zeros(nOfRows, nOfColumns);

% preliminary steps
if nOfRows <= nOfColumns
	minDim = nOfRows;
	
	% find the smallest element of each row
	minVector = min(distMatrix,[],2);
	
	% subtract the smallest element of each row from the row
	distMatrix = distMatrix - repmat(minVector, 1, nOfColumns);
	
	% Steps 1 and 2
	for row = 1:nOfRows
		for col = find(distMatrix(row,:)==0)
			if ~coveredColumns(col)%~any(starMatrix(:,col))
				starMatrix(row, col) = 1;
				coveredColumns(col)  = 1;
				break
			end
		end
	end
	
else % nOfRows > nOfColumns
	minDim = nOfColumns;
	
	% find the smallest element of each column
	minVector = min(distMatrix);
	
	% subtract the smallest element of each column from the column
	distMatrix = distMatrix - repmat(minVector, nOfRows, 1);
	
	% Steps 1 and 2
	for col = 1:nOfColumns
		for row = find(distMatrix(:,col)==0)'
			if ~coveredRows(row)
				starMatrix(row, col) = 1;
				coveredColumns(col)  = 1;
				coveredRows(row)     = 1;
				break
			end
		end
	end
	coveredRows(:) = 0; % was used auxiliary above
	
end

if sum(coveredColumns) == minDim
	% algorithm finished
	assignment = buildassignmentvector__(starMatrix);
else
	% move to step 3
	[assignment, distMatrix, starMatrix, primeMatrix, coveredColumns, coveredRows] = step3__(distMatrix, starMatrix, primeMatrix, coveredColumns, coveredRows, minDim); %#ok
end

% compute cost and remove invalid assignments
[assignment, cost] = computeassignmentcost__(assignment, originalDistMatrix, nOfRows);


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function assignment = buildassignmentvector__(starMatrix)

[maxValue, assignment] = max(starMatrix, [], 2);
assignment(maxValue == 0) = 0;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [assignment, cost] = computeassignmentcost__(assignment, distMatrix, nOfRows)

rowIndex   = find(assignment);
costVector = distMatrix(rowIndex + nOfRows * (assignment(rowIndex)-1));
finiteIndex = isfinite(costVector);
cost = sum(costVector(finiteIndex));
assignment(rowIndex(~finiteIndex)) = 0;

% Step 2: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [assignment, distMatrix, starMatrix, primeMatrix, coveredColumns, coveredRows] = step2__(distMatrix, starMatrix, primeMatrix, coveredColumns, coveredRows, minDim)

% cover every column containing a starred zero
maxValue = max(starMatrix);
coveredColumns(maxValue == 1) = 1;

if sum(coveredColumns) == minDim
	% algorithm finished
	assignment = buildassignmentvector__(starMatrix);
else
	% move to step 3
	[assignment, distMatrix, starMatrix, primeMatrix, coveredColumns, coveredRows] = step3__(distMatrix, starMatrix, primeMatrix, coveredColumns, coveredRows, minDim);
end

% Step 3: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [assignment, distMatrix, starMatrix, primeMatrix, coveredColumns, coveredRows] = step3__(distMatrix, starMatrix, primeMatrix, coveredColumns, coveredRows, minDim)

zerosFound = 1;
while zerosFound
	
	zerosFound = 0;		
	for col = find(~coveredColumns)
		for row = find(~coveredRows')
			if distMatrix(row,col) == 0
				
				primeMatrix(row, col) = 1;
				starCol = find(starMatrix(row,:));
				if isempty(starCol)
					% move to step 4
					[assignment, distMatrix, starMatrix, primeMatrix, coveredColumns, coveredRows] = step4__(distMatrix, starMatrix, primeMatrix, coveredColumns, coveredRows, row, col, minDim);
					return
				else
					coveredRows(row)        = 1;
					coveredColumns(starCol) = 0;
					zerosFound              = 1;
					break % go on in next column
				end
			end
		end
	end
end

% move to step 5
[assignment, distMatrix, starMatrix, primeMatrix, coveredColumns, coveredRows] = step5__(distMatrix, starMatrix, primeMatrix, coveredColumns, coveredRows, minDim);

% Step 4: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [assignment, distMatrix, starMatrix, primeMatrix, coveredColumns, coveredRows] = step4__(distMatrix, starMatrix, primeMatrix, coveredColumns, coveredRows, row, col, minDim)

newStarMatrix          = starMatrix;
newStarMatrix(row,col) = 1;

starCol = col;
starRow = find(starMatrix(:, starCol));

while ~isempty(starRow)

	% unstar the starred zero
	newStarMatrix(starRow, starCol) = 0;
	
	% find primed zero in row
	primeRow = starRow;
	primeCol = find(primeMatrix(primeRow, :));
	
	% star the primed zero
	newStarMatrix(primeRow, primeCol) = 1;
	
	% find starred zero in column
	starCol = primeCol;
	starRow = find(starMatrix(:, starCol));
	
end
starMatrix = newStarMatrix;

primeMatrix(:) = 0;
coveredRows(:) = 0;

% move to step 2
[assignment, distMatrix, starMatrix, primeMatrix, coveredColumns, coveredRows] = step2__(distMatrix, starMatrix, primeMatrix, coveredColumns, coveredRows, minDim);


% Step 5: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [assignment, distMatrix, starMatrix, primeMatrix, coveredColumns, coveredRows] = step5__(distMatrix, starMatrix, primeMatrix, coveredColumns, coveredRows, minDim)

% find smallest uncovered element
uncoveredRowsIndex    = find(~coveredRows');
uncoveredColumnsIndex = find(~coveredColumns);
[s, index1] = min(distMatrix(uncoveredRowsIndex,uncoveredColumnsIndex));
[s, index2] = min(s); %#ok
h = distMatrix(uncoveredRowsIndex(index1(index2)), uncoveredColumnsIndex(index2));

% add h to each covered row
index = find(coveredRows);
distMatrix(index, :) = distMatrix(index, :) + h;

% subtract h from each uncovered column
distMatrix(:, uncoveredColumnsIndex) = distMatrix(:, uncoveredColumnsIndex) - h;

% move to step 3
[assignment, distMatrix, starMatrix, primeMatrix, coveredColumns, coveredRows] = step3__(distMatrix, starMatrix, primeMatrix, coveredColumns, coveredRows, minDim);


⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -