⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tf_smooth.m

📁 扩展卡尔曼和无迹卡尔曼的matlab仿真比较。
💻 M
字号:
%TF_SMOOTH  Two filter based Smoother%% Syntax:%   [M,P] = TF_SMOOTH(M,P,Y,A,Q,H,R,[use_inf])%% In:%   M - NxK matrix of K mean estimates from Kalman filter%   P - NxNxK matrix of K state covariances from Kalman Filter%   Y - Sequence of K measurement as DxK matrix%   A - NxN state transition matrix.%   Q - NxN process noise covariance matrix.%   H - DxN Measurement matrix.%   R - DxD Measurement noise covariance.%   use_inf - If information filter should be used (default 1)%% Out:%   M - Smoothed state mean sequence%   P - Smoothed state covariance sequence%   % Description:%   Two filter linear smoother algorithm. Calculate "smoothed"%   sequence from given Kalman filter output sequence%   by conditioning all steps to all measurements.%% Example:%   m = m0;%   P = P0;%   MM = zeros(size(m,1),size(Y,2));%   PP = zeros(size(m,1),size(m,1),size(Y,2));%   for k=1:size(Y,2)%     [m,P] = kf_predict(m,P,A,Q);%     [m,P] = kf_update(m,P,Y(:,k),H,R);%     MM(:,k) = m;%     PP(:,:,k) = P;%   end%   [SM,SP] = tf_smooth(MM,PP,A,Q,H,R,Y);%% See also:%   KF_PREDICT, KF_UPDATE% History:%   %   02.8.2007 JH Changed the name to tf_smooth%   26.3.2007 JH Fixed a bug in backward filter with observations having%                having more than one dimension.%             % Copyright (C) 2006 Simo S鋜kk

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -