📄 tf_smooth.m
字号:
%TF_SMOOTH Two filter based Smoother%% Syntax:% [M,P] = TF_SMOOTH(M,P,Y,A,Q,H,R,[use_inf])%% In:% M - NxK matrix of K mean estimates from Kalman filter% P - NxNxK matrix of K state covariances from Kalman Filter% Y - Sequence of K measurement as DxK matrix% A - NxN state transition matrix.% Q - NxN process noise covariance matrix.% H - DxN Measurement matrix.% R - DxD Measurement noise covariance.% use_inf - If information filter should be used (default 1)%% Out:% M - Smoothed state mean sequence% P - Smoothed state covariance sequence% % Description:% Two filter linear smoother algorithm. Calculate "smoothed"% sequence from given Kalman filter output sequence% by conditioning all steps to all measurements.%% Example:% m = m0;% P = P0;% MM = zeros(size(m,1),size(Y,2));% PP = zeros(size(m,1),size(m,1),size(Y,2));% for k=1:size(Y,2)% [m,P] = kf_predict(m,P,A,Q);% [m,P] = kf_update(m,P,Y(:,k),H,R);% MM(:,k) = m;% PP(:,:,k) = P;% end% [SM,SP] = tf_smooth(MM,PP,A,Q,H,R,Y);%% See also:% KF_PREDICT, KF_UPDATE% History:% % 02.8.2007 JH Changed the name to tf_smooth% 26.3.2007 JH Fixed a bug in backward filter with observations having% having more than one dimension.% % Copyright (C) 2006 Simo S鋜kk
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -