📄 ukf_predict2.m
字号:
%UKF_PREDICT2 Augmented (state and process noise) UKF prediction step%% Syntax:% [M,P] = UKF_PREDICT2(M,P,a,Q,[param,alpha,beta,kappa])%% In:% M - Nx1 mean state estimate of previous step% P - NxN state covariance of previous step% a - Dynamic model function as inline function,% function handle or name of function in% form a([x;w],param)% Q - Non-singular covariance of process noise w% param - Parameters of a (optional, default empty)% alpha - Transformation parameter (optional)% beta - Transformation parameter (optional)% kappa - Transformation parameter (optional)% mat - If 1 uses matrix form (optional, default 0)%% Out:% M - Updated state mean% P - Updated state covariance%% Description:% Perform augmented form Unscented Kalman Filter prediction step% for model%% x[k+1] = a(x[k],w[k],param)%% Function a should be such that it can be given% DxN matrix of N sigma Dx1 points and it returns % the corresponding predictions for each sigma% point. %% See also:% UKF_PREDICT1, UKF_UPDATE1, UKF_UPDATE2, UKF_PREDICT3, UKF_UPDATE3,% UT_TRANSFORM, UT_WEIGHTS, UT_MWEIGHTS, UT_SIGMAS% Copyright (C) 2003-2006 Simo S鋜kk
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -