⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ukf_predict2.m

📁 扩展卡尔曼和无迹卡尔曼的matlab仿真比较。
💻 M
字号:
%UKF_PREDICT2  Augmented (state and process noise) UKF prediction step%% Syntax:%   [M,P] = UKF_PREDICT2(M,P,a,Q,[param,alpha,beta,kappa])%% In:%   M - Nx1 mean state estimate of previous step%   P - NxN state covariance of previous step%   a - Dynamic model function as inline function,%       function handle or name of function in%       form a([x;w],param)%   Q - Non-singular covariance of process noise w%   param - Parameters of a               (optional, default empty)%   alpha - Transformation parameter      (optional)%   beta  - Transformation parameter      (optional)%   kappa - Transformation parameter      (optional)%   mat   - If 1 uses matrix form         (optional, default 0)%% Out:%   M - Updated state mean%   P - Updated state covariance%% Description:%   Perform augmented form Unscented Kalman Filter prediction step%   for model%%    x[k+1] = a(x[k],w[k],param)%%   Function a should be such that it can be given%   DxN matrix of N sigma Dx1 points and it returns %   the corresponding predictions for each sigma%   point. %% See also:%   UKF_PREDICT1, UKF_UPDATE1, UKF_UPDATE2, UKF_PREDICT3, UKF_UPDATE3,%   UT_TRANSFORM, UT_WEIGHTS, UT_MWEIGHTS, UT_SIGMAS% Copyright (C) 2003-2006 Simo S鋜kk

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -