⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gt.res

📁 FORTRAN编写的差分程序
💻 RES
📖 第 1 页 / 共 2 页
字号:
+     0.424x 8
+     0.273x10

     DEPARTURE SQUARE SUM =46508.2422
     REGRESSION SQUARE SUM=37124.4961
     RESIDUES SQUARE SUM= 9383.7471
     MULTIPLE CORRELATION COEFFICIENT=    0.8934
     MEAN--Y=    -12.38  RMSE=      8.56

                              FITTING
       -45.46  -47.97  -39.48  -36.85  -31.24  -35.47  -35.85  -25.49  -25.34  -31.29
       -39.02  -31.54  -30.78  -38.82  -43.30  -35.77  -22.13  -15.25  -31.06  -41.33
       -39.36  -36.62  -34.82  -33.61  -33.20  -27.48  -39.16  -33.00  -22.45  -31.26
       -37.18  -40.34  -33.12  -26.32  -21.15  -11.40  -13.72  -23.61  -16.08  -13.29
       -16.41  -21.15  -18.39  -26.45  -22.67  -17.37  -13.90  -19.40  -13.63  -15.72
       -17.30  -22.93  -22.60  -15.74   -1.72  -20.75  -30.04  -24.74  -17.50  -12.73
       -14.41  -20.68  -16.87  -18.13  -11.98   -4.74  -11.79   -9.44  -14.85   -7.94
        -0.07   -6.51  -12.59  -14.11  -10.70   -9.30   -0.91   -2.33   -2.19   -2.89
        -2.82   -2.03   -1.31   -0.59   -8.37   -6.40   -5.86   -8.87   -5.90   -2.21
         3.19   12.60    1.59   -7.79   -8.46   -3.60    9.61    5.33    0.99    0.33
        10.08   14.28   13.85   -1.17    1.04   -1.42   -0.12    8.07    8.22   10.66
         5.18    7.93   15.35    5.24    2.16    2.81    4.96    1.87   10.32   14.56
        19.54   11.56   18.07   15.10    9.40   13.37   16.64   22.24

                              FORECAST
        31.47   18.69   10.07


                               6ORDER REGRESSION SET 
     X 1
     X 6
     X 7
     X 8
     X 9
     X10

                              REGRESSION EQUATION
  Y=    -4.439
+     0.396x 1
+    -0.393x 6
+     0.285x 7
+     0.418x 8
+     0.103x 9
+     0.273x10

     DEPARTURE SQUARE SUM =46508.2422
     REGRESSION SQUARE SUM=37158.5938
     RESIDUES SQUARE SUM= 9349.6494
     MULTIPLE CORRELATION COEFFICIENT=    0.8939
     MEAN--Y=    -12.38  RMSE=      8.55

                              FITTING
       -45.55  -47.97  -39.95  -37.10  -30.75  -35.96  -36.09  -25.68  -25.40  -31.28
       -38.28  -31.49  -31.01  -39.11  -43.36  -36.17  -22.26  -14.66  -30.88  -40.80
       -38.92  -37.23  -35.46  -34.04  -32.90  -27.31  -38.56  -33.50  -22.99  -30.66
       -36.58  -40.83  -33.22  -27.16  -21.50  -11.31  -13.17  -22.89  -16.08  -13.21
       -15.60  -21.45  -18.90  -26.31  -23.26  -16.75  -13.58  -19.38  -13.85  -15.34
       -17.25  -22.65  -22.56  -15.65   -2.66  -20.98  -29.86  -23.73  -16.82  -13.21
       -14.21  -20.07  -17.06  -18.61  -12.26   -4.70  -12.25   -9.96  -14.46   -8.20
        -1.04   -5.92  -13.11  -14.71  -11.69   -9.09   -0.01   -1.95   -2.62   -2.12
        -2.50   -1.14   -1.29   -1.76   -8.75   -6.12   -4.87   -8.49   -5.73   -1.99
         3.30   12.28    1.43   -7.66   -7.87   -3.76    8.94    4.28    1.43    1.66
         9.61   13.99   13.83   -1.25    0.40   -1.88    0.09    8.50    8.00    9.75
         5.71    7.97   15.02    4.43    1.46    2.26    4.74    2.61   11.43   14.27
        20.15   12.55   18.20   14.73    9.32   13.32   16.39   23.16

                              FORECAST
        31.26   18.20   10.11


                               7ORDER REGRESSION SET 
     X 1
     X 3
     X 5
     X 6
     X 7
     X 8
     X10

                              REGRESSION EQUATION
  Y=    -3.552
+     0.405x 1
+    -0.089x 3
+     0.113x 5
+    -0.378x 6
+     0.316x 7
+     0.441x 8
+     0.286x10

     DEPARTURE SQUARE SUM =46508.2422
     REGRESSION SQUARE SUM=37182.1719
     RESIDUES SQUARE SUM= 9326.0684
     MULTIPLE CORRELATION COEFFICIENT=    0.8941
     MEAN--Y=    -12.38  RMSE=      8.54

                              FITTING
       -45.17  -47.99  -39.20  -37.56  -31.98  -35.61  -35.64  -24.48  -25.24  -31.41
       -38.84  -30.91  -30.71  -38.68  -43.23  -36.27  -21.91  -14.35  -31.54  -41.80
       -38.85  -36.05  -34.39  -34.03  -34.34  -27.13  -39.22  -33.36  -23.37  -31.74
       -37.95  -40.10  -32.31  -26.81  -22.13  -12.28  -13.23  -23.13  -15.94  -12.52
       -16.44  -22.14  -17.77  -26.10  -22.97  -16.89  -12.99  -19.45  -13.50  -15.48
       -17.65  -21.88  -21.78  -16.51   -2.19  -22.29  -29.83  -22.96  -17.61  -12.23
       -14.00  -20.76  -16.53  -19.28  -13.18   -4.25  -12.67   -9.41  -13.17   -8.07
        -0.79   -6.72  -13.24  -14.57  -11.49  -10.14   -0.99   -3.21   -1.96   -1.01
        -2.62   -2.51   -0.25   -1.42   -8.70   -5.06   -5.44   -8.39   -5.60   -2.99
         2.27   13.29    2.18   -7.68   -8.16   -3.64    9.72    6.45    1.59    0.81
         9.95   13.82   13.77   -1.84    1.41   -0.91   -0.81    7.55    7.66   10.45
         5.03    7.17   13.35    3.97    1.44    3.14    5.43    1.68   11.16   15.02
        20.16   12.03   18.53   15.09    9.75   13.23   16.48   22.89

                              FORECAST
        32.59   19.02    9.81


                               8ORDER REGRESSION SET 
     X 1
     X 3
     X 5
     X 6
     X 7
     X 8
     X 9
     X10

                              REGRESSION EQUATION
  Y=    -3.785
+     0.388x 1
+    -0.091x 3
+     0.081x 5
+    -0.391x 6
+     0.301x 7
+     0.442x 8
+     0.079x 9
+     0.288x10

     DEPARTURE SQUARE SUM =46508.2422
     REGRESSION SQUARE SUM=37198.0000
     RESIDUES SQUARE SUM= 9310.2402
     MULTIPLE CORRELATION COEFFICIENT=    0.8943
     MEAN--Y=    -12.38  RMSE=      8.53

                              FITTING
       -45.46  -47.98  -39.55  -37.64  -31.68  -35.86  -35.77  -24.63  -25.31  -31.27
       -38.26  -31.09  -30.95  -38.82  -43.23  -36.25  -21.85  -14.08  -31.43  -41.41
       -38.72  -36.57  -34.91  -34.01  -33.93  -27.24  -38.81  -33.63  -23.59  -31.52
       -37.48  -40.52  -32.48  -27.33  -22.04  -11.90  -12.95  -22.76  -15.78  -12.54
       -16.07  -22.16  -18.26  -25.98  -23.32  -16.43  -12.85  -19.56  -13.73  -15.09
       -17.49  -21.83  -22.02  -16.24   -2.63  -22.14  -30.02  -22.72  -16.95  -12.39
       -13.99  -20.44  -16.78  -19.33  -13.29   -4.34  -12.90   -9.57  -13.21   -8.14
        -1.24   -6.34  -13.71  -14.82  -12.11   -9.87   -0.71   -2.70   -2.21   -0.68
        -2.50   -1.71   -0.35   -1.94   -9.06   -5.12   -4.82   -8.21   -5.69   -2.82
         2.62   13.04    1.98   -7.55   -7.73   -3.55    9.19    5.41    1.94    1.80
         9.49   13.65   13.86   -1.69    1.09   -1.50   -0.55    7.74    7.52    9.93
         5.32    7.18   13.36    3.49    1.05    2.62    5.07    2.24   11.90   14.67
        20.40   12.81   18.83   15.02    9.40   12.97   16.23   23.48

                              FORECAST
        32.41   18.85    9.93


                               9ORDER REGRESSION SET 
     X 1
     X 3
     X 4
     X 5
     X 6
     X 7
     X 8
     X 9
     X10

                              REGRESSION EQUATION
  Y=    -3.807
+     0.395x 1
+    -0.086x 3
+    -0.041x 4
+     0.084x 5
+    -0.387x 6
+     0.304x 7
+     0.446x 8
+     0.078x 9
+     0.303x10

     DEPARTURE SQUARE SUM =46508.2422
     REGRESSION SQUARE SUM=37203.5000
     RESIDUES SQUARE SUM= 9304.7402
     MULTIPLE CORRELATION COEFFICIENT=    0.8944
     MEAN--Y=    -12.38  RMSE=      8.53

                              FITTING
       -45.46  -47.62  -39.33  -37.21  -31.47  -35.54  -35.65  -24.78  -25.64  -31.17
       -38.39  -30.97  -30.76  -38.98  -43.49  -36.27  -21.95  -14.40  -31.36  -41.21
       -38.81  -36.75  -34.83  -34.06  -34.03  -27.23  -39.02  -33.92  -23.62  -31.17
       -37.53  -40.32  -32.79  -27.24  -22.00  -11.98  -13.14  -22.87  -15.66  -12.31
       -15.82  -22.06  -18.28  -26.12  -23.47  -16.88  -12.72  -19.31  -13.61  -15.21
       -17.32  -21.62  -22.16  -16.31   -2.20  -22.28  -30.35  -22.40  -16.81  -12.04
       -14.02  -20.47  -16.85  -19.73  -13.71   -4.22  -13.07   -9.60  -13.43   -8.13
        -1.13   -6.37  -14.17  -15.48  -12.06   -9.61   -0.64   -2.61   -1.93   -0.41
        -2.35   -1.89   -0.25   -1.66   -9.10   -4.82   -4.78   -7.88   -5.83   -2.73
         2.61   12.98    1.67   -7.59   -7.89   -3.80    9.31    5.52    1.92    1.86
         9.34   13.13   14.03   -1.60    0.93   -1.71   -0.43    7.86    7.54    9.83
         5.17    7.11   13.67    3.91    0.98    2.77    5.06    2.21   11.81   14.47
        20.17   12.78   18.94   15.07    9.26   12.99   16.30   23.68

                              FORECAST
        32.37   18.31    9.86


                              10ORDER REGRESSION SET 
     X 1
     X 2
     X 3
     X 4
     X 5
     X 6
     X 7
     X 8
     X 9
     X10

                              REGRESSION EQUATION
  Y=    -3.700
+     0.399x 1
+    -0.019x 2
+    -0.086x 3
+    -0.037x 4
+     0.087x 5
+    -0.381x 6
+     0.303x 7
+     0.451x 8
+     0.074x 9
+     0.306x10

     DEPARTURE SQUARE SUM =46508.2422
     REGRESSION SQUARE SUM=37204.5547
     RESIDUES SQUARE SUM= 9303.6865
     MULTIPLE CORRELATION COEFFICIENT=    0.8944
     MEAN--Y=    -12.38  RMSE=      8.53

                              FITTING
       -45.44  -47.66  -39.36  -37.23  -31.56  -35.48  -35.67  -24.84  -25.64  -31.01
       -38.30  -30.87  -30.65  -38.91  -43.47  -36.40  -22.15  -14.35  -31.15  -41.12
       -38.94  -36.84  -34.85  -34.02  -34.07  -27.24  -39.13  -33.92  -23.53  -31.32
       -37.48  -40.33  -32.89  -27.27  -21.81  -12.01  -13.19  -22.82  -15.59  -12.18
       -15.91  -21.94  -18.29  -26.21  -23.40  -16.89  -12.82  -19.24  -13.41  -15.16
       -17.38  -21.57  -22.13  -16.34   -2.36  -22.43  -30.25  -22.36  -16.93  -12.12
       -14.03  -20.44  -16.86  -19.75  -13.70   -4.15  -13.14   -9.52  -13.42   -8.04
        -1.09   -6.46  -14.04  -15.52  -12.22   -9.53   -0.70   -2.50   -1.98   -0.39
        -2.37   -1.94   -0.29   -1.64   -9.18   -4.81   -4.72   -7.93   -5.87   -2.71
         2.73   13.05    1.42   -7.78   -7.70   -3.69    9.26    5.52    1.87    1.93
         9.41   13.17   14.08   -1.72    0.88   -1.66   -0.32    7.82    7.54    9.89
         5.16    6.95   13.58    3.95    0.85    2.64    4.98    2.18   11.73   14.58
        20.18   12.58   18.97   15.25    9.35   13.06   16.34   23.76

                              FORECAST
        32.55   18.26    9.41


     REGRESSION SET IS--  2

     X 1
     X 7
                              THE FINAL RESULT OF FITTING AND FORECAST
     RMSE=           9.11
     1    -38.00    -42.43
     2    -53.00    -47.86
     3    -32.00    -39.41
     4    -44.00    -35.94
     5    -17.00    -31.19
     6    -17.00    -32.80
     7    -23.00    -36.02
     8    -21.00    -28.93
     9    -19.00    -26.25
    10    -31.00    -33.42
    11    -40.00    -41.15
    12    -26.00    -37.03
    13    -26.00    -31.32
    14    -42.00    -36.28
    15    -45.00    -39.07
    16    -37.00    -35.98
    17    -10.00    -26.35
    18      2.00    -24.11
    19    -37.00    -31.98
    20    -31.00    -35.41
    21    -27.00    -35.61
    22    -31.00    -33.23
    23    -39.00    -35.76
    24    -48.00    -32.88
    25    -41.00    -33.08
    26    -32.00    -32.54
    27    -43.00    -38.52
    28    -37.00    -30.72
    29    -22.00    -23.99
    30    -45.00    -31.03
    31    -38.00    -33.09
    32    -40.00    -37.12
    33    -43.00    -34.40
    34    -35.00    -29.59
    35    -29.00    -21.47
    36    -10.00    -13.30
    37     -8.00    -14.30
    38    -27.00    -24.96
    39    -12.00    -13.37
    40      1.00    -13.02
    41     -8.00    -18.02
    42    -17.00    -21.87
    43    -30.00    -21.16
    44    -39.00    -25.92
    45    -25.00    -21.50
    46    -15.00    -20.25
    47    -35.00    -18.25
    48    -34.00    -17.46
    49    -25.00    -14.60
    50    -25.00    -15.65
    51    -30.00    -14.57
    52    -21.00    -20.37
    53    -21.00    -20.31
    54     -9.00    -19.74
    55      0.00    -11.74
    56    -21.00    -18.77
    57    -40.00    -23.49
    58    -29.00    -20.64
    59    -16.00    -10.66
    60    -17.00     -7.97
    61    -12.00    -11.60
    62    -20.00    -18.00
    63    -18.00    -19.70
    64    -19.00    -19.93
    65    -12.00    -16.36
    66      7.00    -11.49
    67     -4.00     -5.97
    68     -5.00     -5.88
    69    -22.00    -17.93
    70     -3.00     -6.81
    71      5.00      1.29
    72     -1.00    -10.22
    73    -11.00    -16.40
    74     -2.00    -15.84
    75     -6.00    -12.46
    76     -2.00    -11.69
    77     10.00     -5.78
    78     14.00     -0.37
    79      4.00      1.04
    80      4.00     -3.55
    81      7.00     -0.09
    82      1.00     -1.34
    83      0.00     -4.96
    84     15.00     -1.03
    85      6.00     -3.87
    86     -8.00     -6.35
    87     -5.00     -3.99
    88     -6.00     -4.68
    89     -6.00     -2.91
    90    -13.00     -1.78
    91     -2.00      1.54
    92      7.00      4.74
    93     11.00      2.83
    94    -13.00     -4.45
    95    -14.00     -7.01
    96    -23.00     -0.34
    97      7.00      9.65
    98     12.00      8.35
    99      5.00      3.16
   100      0.00     -0.05
   101     11.00     13.25
   102     10.00     17.32
   103     11.00      9.22
   104    -15.00     -1.31
   105    -12.00      1.58
   106     -2.00      2.01
   107     -4.00      1.54
   108     -8.00      4.19
   109      8.00      6.97
   110      5.00      9.46
   111    -10.00      3.48
   112      2.00      6.47
   113     15.00     12.97
   114    -11.00      2.84
   115     -8.00      4.44
   116    -21.00      1.45
   117     10.00      7.12
   118      3.00      5.83
   119     12.00      9.79
   120     18.00     14.98
   121     24.00     16.73
   122      9.00     12.60
   123     31.00     20.29
   124     10.00     16.06
   125      7.00     10.95
   126     16.00     12.27
   127     33.00     15.53
   128     33.00     15.04
   129      0.00     23.13
   130      0.00     21.98
   131      0.00     17.68

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -