📄 fourier.c
字号:
#include<c6x.h>
#include<math.h>
#define IMAGEWIDTH 128
#define IMAGEHEIGHT 128
#define MODEBLOCK 6
#define MODEINCLINE 7
#define MODEFPHOTO 8
#define PI 3.14159265
typedef struct complex_struct
{
float real;
float img;
} complex;
void InitImage(unsigned int nMode,unsigned char *pImage,int nWidth,int nHeight);
void FFT(complex * TD,complex * FD,int r);
void Fourier(unsigned char *pImage,int nWidth,int nHeight);
unsigned char dbImage[IMAGEWIDTH*IMAGEHEIGHT];
unsigned char dbTargetImage[IMAGEWIDTH*IMAGEHEIGHT];
complex TD[IMAGEWIDTH*IMAGEHEIGHT];
complex FD[IMAGEWIDTH*IMAGEHEIGHT];
complex w[IMAGEWIDTH];
complex x1[IMAGEWIDTH];
complex x2[IMAGEWIDTH];
/* 傅立叶变换实验程序 */
int main()
{
InitImage(MODEBLOCK,dbImage,IMAGEWIDTH,IMAGEHEIGHT);
Fourier(dbImage,IMAGEWIDTH,IMAGEHEIGHT);
InitImage(MODEINCLINE,dbImage,IMAGEWIDTH,IMAGEHEIGHT); //BreakPoint
Fourier(dbImage,IMAGEWIDTH,IMAGEHEIGHT);
InitImage(MODEFPHOTO,dbImage,IMAGEWIDTH,IMAGEHEIGHT); //BreakPoint
Fourier(dbImage,IMAGEWIDTH,IMAGEHEIGHT);
while ( 1 ); //BreakPoint
}
void Fourier(unsigned char *pImage,int lWidth, int lHeight)
{
// 中间变量
float fTemp,fWork1,fWork2;
unsigned char *pWork,*pWork3;
complex *pWork1,*pWork2;
// 循环变量
int i;
int j;
// 进行付立叶变换的宽度和高度(2的整数次方)
int w;
int h;
int wp;
int hp;
// 赋初值
w = 1;
h = 1;
wp = 0;
hp = 0;
// 计算进行付立叶变换的宽度和高度(2的整数次方)
while ( w*2<=lWidth )
{
w*=2; wp++;
}
while ( h*2<=lHeight )
{
h*=2; hp++;
}
pWork=pImage; pWork1=TD;
for ( i=0;i<h;i++ ) // 行
for ( j=0;j<w;j++,pWork++,pWork1++ ) // 列
{
pWork1->real=(*pWork);
pWork1->img=0;
}
pWork1=TD; pWork2=FD;
// 对y方向进行快速付立叶变换
for ( i=0;i<h;i++ ) FFT(pWork1+w*i,pWork2+w*i,wp);
// 保存变换结果
for ( i=0;i<h;i++ )
for ( j=0;j<w;j++ )
TD[j*h+i]=FD[i*w+j];
// 对x方向进行快速付立叶变换
for ( i=0;i<w;i++ ) FFT(pWork1+i*h,pWork2+i*h,hp);
for ( i=0;i<w;i++ )
for ( j=0;j<h;j++ )
TD[j*w+i]=FD[i*h+j];
pWork1=TD; pWork2=FD; pWork=dbTargetImage;
for ( i=0;i<h;i++ ) // 行
{
for ( j=0;j<w;j++ ) // 列
{
// 计算频谱
fWork1=(pWork2+j*h+i)->real;
fWork2=(pWork2+j*h+i)->img;
fTemp=sqrt(fWork1*fWork1+fWork2*fWork2)/100; //将幅度适当缩小后转换成灰度显示
if ( fTemp>255 ) // 判断是否超过255
fTemp = 255; // 对于超过的,直接设置为255
pWork3=pWork+lWidth*(lHeight-1-(i<h/2?i+h/2:i-h/2))+(j<w/2?j+w/2:j-w/2);
(*pWork3)=(unsigned char)fTemp;
}
}
}
void FFT(complex *TD,complex *FD,int r)
{
// 付立叶变换点数
int count;
// 循环变量
int i,j,k;
// 中间变量
int bfsize,p;
// 角度
float angle;
complex *W,*X1,*X2,*X;
W=w; X1=x1; X2=x2;
// 计算付立叶变换点数
count=1<<r;
// 计算加权系数
for ( i=0;i<count/2;i++ )
{
angle=-i*PI*2/count;
(W+i)->real=cos(angle);
(W+i)->img=sin(angle);
}
// 将时域点写入X1
for ( i=0;i<count;i++ )
{
(X1+i)->real=(TD+i)->real;
(X1+i)->img=(TD+i)->img;
}
// 采用蝶形算法进行快速付立叶变换
for ( k=0;k<r;k++ )
{
for ( j=0;j<1<<k;j++ )
{
bfsize=1<<(r-k);
for ( i=0;i<bfsize/2;i++ )
{
p=j*bfsize;
(X2+i+p)->real=(X1+i+p)->real+(X1+i+p+bfsize/2)->real;
(X2+i+p)->img=(X1+i+p)->img+(X1+i+p+bfsize/2)->img;
(X2+i+p+bfsize/2)->real=((X1+i+p)->real-(X1+i+p+bfsize/2)->real)*(W+i*(1<<k))->real
-((X1+i+p)->img-(X1+i+p+bfsize/2)->img)*(W+i*(1<<k))->img;
(X2+i+p+bfsize/2)->img=((X1+i+p)->real-(X1+i+p+bfsize/2)->real)*(W+i*(1<<k))->img
+((X1+i+p)->img-(X1+i+p+bfsize/2)->img)*(W+i*(1<<k))->real;
}
}
X=X1; X1=X2; X2=X;
}
// 重新排序
for ( j=0;j<count;j++ )
{
p = 0;
for ( i=0;i<r;i++ )
if ( j&(1<<i) )
p+=1<<(r-i-1);
(FD+j)->real=(X1+p)->real;
(FD+j)->img=(X1+p)->img;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -