📄 consfmin.m
字号:
function [g, geq, dg, dgeq] = consfmin(x, baseMVA, bus, gen, gencost, branch, areas, Ybus, Yf, Yt, mpopt, parms, ccost, N, fparm, H, Cw)%CONSFMIN Evaluates nonlinear constraints and their Jacobian for OPF.% [g, geq, dg, dgeq] = consfmin(x, baseMVA, bus, gen, gencost, ...% branch, areas, Ybus, Yf, Yt, mpopt, parms, ccost, N, fparm, H, Cw)% MATPOWER% $Id: consfmin.m,v 1.12 2007/06/26 16:05:21 ray Exp $% by Carlos E. Murillo-Sanchez, PSERC Cornell & Universidad Autonoma de Manizales% and Ray Zimmerman, PSERC Cornell% Copyright (c) 1996-2006 by Power System Engineering Research Center (PSERC)% See http://www.pserc.cornell.edu/matpower/ for more info.%%----- initialize -----%% define named indices into data matrices[GEN_BUS, PG, QG, QMAX, QMIN, VG, MBASE, GEN_STATUS, PMAX, PMIN, ... MU_PMAX, MU_PMIN, MU_QMAX, MU_QMIN, PC1, PC2, QC1MIN, QC1MAX, ... QC2MIN, QC2MAX, RAMP_AGC, RAMP_10, RAMP_30, RAMP_Q, APF] = idx_gen;[F_BUS, T_BUS, BR_R, BR_X, BR_B, RATE_A, RATE_B, RATE_C, ... TAP, SHIFT, BR_STATUS, PF, QF, PT, QT, MU_SF, MU_ST, ... ANGMIN, ANGMAX, MU_ANGMIN, MU_ANGMAX] = idx_brch;[PW_LINEAR, POLYNOMIAL, MODEL, STARTUP, SHUTDOWN, NCOST, COST] = idx_cost;%% constantj = sqrt(-1);%% unpack needed parametersnb = parms(1);ng = parms(2);nl = parms(3);ny = parms(4);% nx = parms(5);% nvl = parms(6);nz = parms(7);% nxyz = parms(8);thbas = parms(9);thend = parms(10);vbas = parms(11);vend = parms(12);pgbas = parms(13);pgend = parms(14);qgbas = parms(15);qgend = parms(16);% ybas = parms(17);% yend = parms(18);% zbas = parms(19);% zend = parms(20);% pmsmbas = parms(21);% pmsmend = parms(22);% qmsmbas = parms(23);% qmsmend = parms(24);% sfbas = parms(25);% sfend = parms(26);% stbas = parms(27);% stend = parms(28);%% grab Pg & QgPg = x(pgbas:pgend); %% active generation in p.u.Qg = x(qgbas:qgend); %% reactive generation in p.u.%% put Pg & Qg back in gengen(:, PG) = Pg * baseMVA; %% active generation in MWgen(:, QG) = Qg * baseMVA; %% reactive generation in MVAr %% rebuild SbusSbus = makeSbus(baseMVA, bus, gen); %% net injected power in p.u.%% ----- evaluate constraints -----%% reconstruct VVa = zeros(nb, 1);Va = x(thbas:thend);Vm = x(vbas:vend);V = Vm .* exp(j * Va);%% evaluate power flow equationsmis = V .* conj(Ybus * V) - Sbus;%%----- evaluate constraint function values -----%% first, the equality constraints (power flow)geq = [ real(mis); %% active power mismatch for all buses imag(mis) ]; %% reactive power mismatch for all buses%% then, the inequality constraints (branch flow limits)if mpopt(24) == 2 %% current magnitude limit, |I| g = [ abs(Yf*V) - branch(:, RATE_A)/baseMVA; %% branch current limits (from bus) abs(Yt*V) - branch(:, RATE_A)/baseMVA ]; %% branch current limits (to bus)else %% compute branch power flows Sf = V(branch(:, F_BUS)) .* conj(Yf * V); %% complex power injected at "from" bus (p.u.) St = V(branch(:, T_BUS)) .* conj(Yt * V); %% complex power injected at "to" bus (p.u.) if mpopt(24) == 1 %% active power limit, P (Pan Wei) g = [ real(Sf) - branch(:, RATE_A)/baseMVA; %% branch real power limits (from bus) real(St) - branch(:, RATE_A)/baseMVA ]; %% branch real power limits (to bus) else %% apparent power limit, |S| g = [ abs(Sf) - branch(:, RATE_A)/baseMVA; %% branch apparent power limits (from bus) abs(St) - branch(:, RATE_A)/baseMVA ]; %% branch apparent power limits (to bus) endend%%----- evaluate partials of constraints -----if nargout > 2 %% compute partials of injected bus powers [dSbus_dVm, dSbus_dVa] = dSbus_dV(Ybus, V); %% w.r.t. V dSbus_dPg = sparse(gen(:, GEN_BUS), 1:ng, -1, nb, ng); %% w.r.t. Pg dSbus_dQg = sparse(gen(:, GEN_BUS), 1:ng, -j, nb, ng); %% w.r.t. Qg %% construct Jacobian of equality constraints (power flow) and transpose it dgeq = [ %% equality constraints real(dSbus_dVa), real(dSbus_dVm), ... real(dSbus_dPg), real(dSbus_dQg), sparse(nb, ny+nz); %% P mismatch imag(dSbus_dVa), imag(dSbus_dVm), ... imag(dSbus_dPg), imag(dSbus_dQg), sparse(nb, ny+nz); %% Q mismatch ]'; %% compute partials of Flows w.r.t. V if mpopt(24) == 2 %% current [dFf_dVa, dFf_dVm, dFt_dVa, dFt_dVm, Ff, Ft] = dIbr_dV(branch, Yf, Yt, V); else %% power [dFf_dVa, dFf_dVm, dFt_dVa, dFt_dVm, Ff, Ft] = dSbr_dV(branch, Yf, Yt, V); end if mpopt(24) == 1 %% real part of flow (active power) df_dVa = real(dFf_dVa); df_dVm = real(dFf_dVm); dt_dVa = real(dFt_dVa); dt_dVm = real(dFt_dVm); else %% magnitude of flow (of complex power or current) [df_dVa, df_dVm, dt_dVa, dt_dVm] = ... dAbr_dV(dFf_dVa, dFf_dVm, dFt_dVa, dFt_dVm, Ff, Ft); end %% construct Jacobian of inequality constraints (branch limits) %% and transpose it so fmincon likes it dg = [ df_dVa, df_dVm, sparse(nl,2*ng+ny+nz); %% "from" flow limit dt_dVa, dt_dVm, sparse(nl,2*ng+ny+nz); %% "to" flow limit ]'; %% the following lines can be removed if/when fmincon %% supports sparse matrices for non-linearly constrained problems dgeq = full(dgeq); dg = full(dg);endreturn;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -