📄 burg.m
字号:
clear
%取样点
%定义常数值
N=32;
a(1)=-0.850848;d2=0.101043;
f1=0.05;f2=0.40;f3=0.42;
ur=0.5*d2.*randn(1,N);
ui=0.5*d2.*randn(1,N);
u=ur+ui*i;
%定义32个复数点
z(1)=u(1);
x(1)=6+z(1);
for n=2:N
z(n)=-a(1)*z(n-1)+u(n);
x(n)=2*cos(2*pi*f1*(n-1))+2*cos(2*pi*f2*(n-1))+2*cos(2*pi*f3*(n-1))+z(n);
end
%定义f范围
fmin=-0.5;fstep=0.001;fmax=0.5;
f=fmin:fstep:fmax;
nf=(fmax-fmin)/fstep;
t=sqrt(-1);
%初值
rxx=0;p0=zeros(1,11);ef=zeros(11,N);eb=zeros(11,N);a=zeros(10,10);
for n=1:N
rxx=rxx+(abs(x(n)))^2;
end
rxx=(1/N)*rxx;p0(1)=rxx;
ef(1,:)=x;eb(1,:)=x;ef(1,1)=0;eb(1,32)=0;
%算法
p=10;kk=zeros(1,10);
for k=1:p
e1=0;e2=0;
for n=(k+1):N
e1=e1+ef(k,n)*(conj(eb(k,n-1)));
e2=e2+(abs(ef(k,n))^2+abs(eb(k,n-1))^2);
kk(k)=(-2)*e1/e2;
ef(k+1,n)=ef(k,n)+kk(k)*eb(k,n-1);
eb(k+1,n)=eb(k,n-1)+conj(kk(k))*ef(k,n);
end
for i=1:(k-1)
a(k,i)=a(k-1,i)+kk(k)*conj(a(k-1,k-i));
end
a(k,k)=kk(k);
p0(k+1)=(1-abs(kk(k))^2)*p0(k);
end
%功率谱
for j=1:nf+1
pxx=0;
for k=1:p
pxx=pxx+a(10,k)*exp(-t*2*pi*f(j)*k);
end
pxxf(j)=d2/[(abs(1+pxx))^2];
pxxf(j)=10*log10(pxxf(j));
end
plot(f,pxxf)
title('伯格算法');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -