⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 minimize.m

📁 支持向量机多参数自动选择优化程序!机器学习
💻 M
字号:
function [X, fX, i] = minimize(X, f, length, varargin);% Minimize a continuous differentialble multivariate function. Starting point% is given by "X" (D by 1), and the function named in the string "f", must% return a function value and a vector of partial derivatives. The Polack-% Ribiere flavour of conjugate gradients is used to compute search directions,% and a line search using quadratic and cubic polynomial approximations and the% Wolfe-Powell stopping criteria is used together with the slope ratio method% for guessing initial step sizes. Additionally a bunch of checks are made to% make sure that exploration is taking place and that extrapolation will not% be unboundedly large. The "length" gives the length of the run: if it is% positive, it gives the maximum number of line searches, if negative its% absolute gives the maximum allowed number of function evaluations. You can% (optionally) give "length" a second component, which will indicate the% reduction in function value to be expected in the first line-search (defaults% to 1.0). The function returns when either its length is up, or if no further% progress can be made (ie, we are at a minimum, or so close that due to% numerical problems, we cannot get any closer). If the function terminates% within a few iterations, it could be an indication that the function value% and derivatives are not consistent (ie, there may be a bug in the% implementation of your "f" function). The function returns the found% solution "X", a vector of function values "fX" indicating the progress made% and "i" the number of iterations (line searches or function evaluations,% depending on the sign of "length") used.%% Usage: [X, fX, i] = minimize(X, f, length, P1, P2, P3, P4, P5)%% See also: checkgrad %% Copyright (C) 2001 and 2002 by Carl Edward Rasmussen. Date 2002-02-13% Modified Olivier Chapelle, 21/04/2005  RHO = 0.01;                            % a bunch of constants for line searchesSIG = 0.5;       % RHO and SIG are the constants in the Wolfe-Powell conditionsINT = 0.1;    % don't reevaluate within 0.1 of the limit of the current bracketEXT = 3.0;                    % extrapolate maximum 3 times the current bracketMAX = 20;                         % max 20 function evaluations per line searchRATIO = 100;                                      % maximum allowed slope ratioif isstruct(length)  param = length;  length = param.length;else  param.tolX = 1e-10;  param.verb = 1;end;if max(size(length)) == 2, red=length(2); length=length(1); else red=1; endif length>0, S=['Linesearch']; else S=['Function evaluation']; end i = 0;                                            % zero the run length counterls_failed = 0;                             % no previous line search has failedfX = [];[f1 df1] = feval(f,X,varargin{:});               % get function value and gradienti = i + (length<0);                                            % count epochs?!s = -df1;                                        % search direction is steepestd1 = -s'*s;                                                 % this is the slopez1 = red/(1-d1);                                  % initial step is red/(|s|+1)while i < abs(length)                                      % while not finished  i = i + (length>0);                                      % count iterations?!  X0 = X; f0 = f1; df0 = df1;                   % make a copy of current values  X = X + z1*s;                                             % begin line search  [f2 df2] = feval(f,X,varargin{:});  i = i + (length<0);                                          % count epochs?!  if df2'*df2 < param.tolX    break;                                              % We are at the minimum  end;  d2 = df2'*s;  f3 = f1; d3 = d1; z3 = -z1;             % initialize point 3 equal to point 1  if length>0, M = MAX; else M = min(MAX, -length-i); end  success = 0; limit = -1;                     % initialize quanteties  while 1    while ((f2 > f1+z1*RHO*d1) | (d2 > -SIG*d1)) & (M > 0)       limit = z1;                                         % tighten the bracket      if f2 > f1        z2 = z3 - (0.5*d3*z3*z3)/(d3*z3+f2-f3);                 % quadratic fit      else        A = 6*(f2-f3)/z3+3*(d2+d3);                                 % cubic fit        B = 3*(f3-f2)-z3*(d3+2*d2);        z2 = (sqrt(B*B-A*d2*z3*z3)-B)/A;       % numerical error possible - ok!      end      if isnan(z2) | isinf(z2)        z2 = z3/2;                  % if we had a numerical problem then bisect      end      z2 = max(min(z2, INT*z3),(1-INT)*z3);  % don't accept too close to limits      z1 = z1 + z2;                                           % update the step      X = X + z2*s;      [f2 df2] = feval(f,X,varargin{:});      M = M - 1; i = i + (length<0);                           % count epochs?!      d2 = df2'*s;      z3 = z3-z2;                    % z3 is now relative to the location of z2    end    if f2 > f1+z1*RHO*d1 | d2 > -SIG*d1      break;                                                % this is a failure    elseif d2 > SIG*d1      success = 1; break;                                             % success    elseif M == 0      break;                                                          % failure    end    A = 6*(f2-f3)/z3+3*(d2+d3);                      % make cubic extrapolation    B = 3*(f3-f2)-z3*(d3+2*d2);    z2 = -d2*z3*z3/(B+sqrt(B*B-A*d2*z3*z3));        % num. error possible - ok!    if ~isreal(z2) | isnan(z2) | isinf(z2) | z2 < 0   % num prob or wrong sign?      if limit < -0.5                               % if we have no upper limit        z2 = z1 * (EXT-1);                 % the extrapolate the maximum amount      else        z2 = (limit-z1)/2;                                   % otherwise bisect      end    elseif (limit > -0.5) & (z2+z1 > limit)          % extraplation beyond max?      z2 = (limit-z1)/2;                                               % bisect    elseif (limit < -0.5) & (z2+z1 > z1*EXT)       % extrapolation beyond limit      z2 = z1*(EXT-1.0);                           % set to extrapolation limit    elseif z2 < -z3*INT      z2 = -z3*INT;    elseif (limit > -0.5) & (z2 < (limit-z1)*(1.0-INT))   % too close to limit?      z2 = (limit-z1)*(1.0-INT);    end    f3 = f2; d3 = d2; z3 = -z2;                  % set point 3 equal to point 2    z1 = z1 + z2; X = X + z2*s;                      % update current estimates    [f2 df2] = feval(f,X,varargin{:});    M = M - 1; i = i + (length<0);                             % count epochs?!    d2 = df2'*s;  end                                                      % end of line search  if success                                         % if line search succeeded    f1 = f2; fX = [fX' f1]';    if param.verb > 1      fprintf('\t%s %6i;  Value %4.6e\t Gradient norm %4.6e\r', ...            S, i, f1, df2'*df2);    end;    s = (df2'*df2-df1'*df2)/(df1'*df1)*s - df2;      % Polack-Ribiere direction    tmp = df1; df1 = df2; df2 = tmp;                         % swap derivatives    d2 = df1'*s;    if d2 > 0                                      % new slope must be negative      s = -df1;                              % otherwise use steepest direction      d2 = -s'*s;        end    z1 = z1 * min(RATIO, d1/(d2-realmin));          % slope ratio but max RATIO    d1 = d2;    ls_failed = 0;                              % this line search did not fail  else    X = X0; f1 = f0; df1 = df0;  % restore point from before failed line search    if ls_failed | i > abs(length)          % line search failed twice in a row      break;                             % or we ran out of time, so we give up    end    tmp = df1; df1 = df2; df2 = tmp;                         % swap derivatives    s = -df1;                                                    % try steepest    d1 = -s'*s;    z1 = 1/(1-d1);                         ls_failed = 1;                                    % this line search failed  endendif param.verb > 1  fprintf('\n');end;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -