📄 tree.h
字号:
/* $OpenBSD: tree.h,v 1.7 2002/10/17 21:51:54 art Exp $ *//* * Copyright 2002 Niels Provos <provos@citi.umich.edu> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */#ifndef _SYS_TREE_H_#define _SYS_TREE_H_/* * This file defines data structures for different types of trees: * splay trees and red-black trees. * * A splay tree is a self-organizing data structure. Every operation * on the tree causes a splay to happen. The splay moves the requested * node to the root of the tree and partly rebalances it. * * This has the benefit that request locality causes faster lookups as * the requested nodes move to the top of the tree. On the other hand, * every lookup causes memory writes. * * The Balance Theorem bounds the total access time for m operations * and n inserts on an initially empty tree as O((m + n)lg n). The * amortized cost for a sequence of m accesses to a splay tree is O(lg n); * * A red-black tree is a binary search tree with the node color as an * extra attribute. It fulfills a set of conditions: * - every search path from the root to a leaf consists of the * same number of black nodes, * - each red node (except for the root) has a black parent, * - each leaf node is black. * * Every operation on a red-black tree is bounded as O(lg n). * The maximum height of a red-black tree is 2lg (n+1). */#define SPLAY_HEAD(name, type) \struct name { \ struct type *sph_root; /* root of the tree */ \}#define SPLAY_INITIALIZER(root) \ { NULL }#define SPLAY_INIT(root) do { \ (root)->sph_root = NULL; \} while (0)#define SPLAY_ENTRY(type) \struct { \ struct type *spe_left; /* left element */ \ struct type *spe_right; /* right element */ \}#define SPLAY_LEFT(elm, field) (elm)->field.spe_left#define SPLAY_RIGHT(elm, field) (elm)->field.spe_right#define SPLAY_ROOT(head) (head)->sph_root#define SPLAY_EMPTY(head) (SPLAY_ROOT(head) == NULL)/* SPLAY_ROTATE_{LEFT,RIGHT} expect that tmp hold SPLAY_{RIGHT,LEFT} */#define SPLAY_ROTATE_RIGHT(head, tmp, field) do { \ SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(tmp, field); \ SPLAY_RIGHT(tmp, field) = (head)->sph_root; \ (head)->sph_root = tmp; \} while (0) #define SPLAY_ROTATE_LEFT(head, tmp, field) do { \ SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(tmp, field); \ SPLAY_LEFT(tmp, field) = (head)->sph_root; \ (head)->sph_root = tmp; \} while (0)#define SPLAY_LINKLEFT(head, tmp, field) do { \ SPLAY_LEFT(tmp, field) = (head)->sph_root; \ tmp = (head)->sph_root; \ (head)->sph_root = SPLAY_LEFT((head)->sph_root, field); \} while (0)#define SPLAY_LINKRIGHT(head, tmp, field) do { \ SPLAY_RIGHT(tmp, field) = (head)->sph_root; \ tmp = (head)->sph_root; \ (head)->sph_root = SPLAY_RIGHT((head)->sph_root, field); \} while (0)#define SPLAY_ASSEMBLE(head, node, left, right, field) do { \ SPLAY_RIGHT(left, field) = SPLAY_LEFT((head)->sph_root, field); \ SPLAY_LEFT(right, field) = SPLAY_RIGHT((head)->sph_root, field);\ SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(node, field); \ SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(node, field); \} while (0)/* Generates prototypes and inline functions */#define SPLAY_PROTOTYPE(name, type, field, cmp) \void name##_SPLAY(struct name *, struct type *); \void name##_SPLAY_MINMAX(struct name *, int); \struct type *name##_SPLAY_INSERT(struct name *, struct type *); \struct type *name##_SPLAY_REMOVE(struct name *, struct type *); \ \/* Finds the node with the same key as elm */ \static __inline struct type * \name##_SPLAY_FIND(struct name *head, struct type *elm) \{ \ if (SPLAY_EMPTY(head)) \ return(NULL); \ name##_SPLAY(head, elm); \ if ((cmp)(elm, (head)->sph_root) == 0) \ return (head->sph_root); \ return (NULL); \} \ \static __inline struct type * \name##_SPLAY_NEXT(struct name *head, struct type *elm) \{ \ name##_SPLAY(head, elm); \ if (SPLAY_RIGHT(elm, field) != NULL) { \ elm = SPLAY_RIGHT(elm, field); \ while (SPLAY_LEFT(elm, field) != NULL) { \ elm = SPLAY_LEFT(elm, field); \ } \ } else \ elm = NULL; \ return (elm); \} \ \static __inline struct type * \name##_SPLAY_MIN_MAX(struct name *head, int val) \{ \ name##_SPLAY_MINMAX(head, val); \ return (SPLAY_ROOT(head)); \}/* Main splay operation. * Moves node close to the key of elm to top */#define SPLAY_GENERATE(name, type, field, cmp) \struct type * \name##_SPLAY_INSERT(struct name *head, struct type *elm) \{ \ if (SPLAY_EMPTY(head)) { \ SPLAY_LEFT(elm, field) = SPLAY_RIGHT(elm, field) = NULL; \ } else { \ int __comp; \ name##_SPLAY(head, elm); \ __comp = (cmp)(elm, (head)->sph_root); \ if(__comp < 0) { \ SPLAY_LEFT(elm, field) = SPLAY_LEFT((head)->sph_root, field);\ SPLAY_RIGHT(elm, field) = (head)->sph_root; \ SPLAY_LEFT((head)->sph_root, field) = NULL; \ } else if (__comp > 0) { \ SPLAY_RIGHT(elm, field) = SPLAY_RIGHT((head)->sph_root, field);\ SPLAY_LEFT(elm, field) = (head)->sph_root; \ SPLAY_RIGHT((head)->sph_root, field) = NULL; \ } else \ return ((head)->sph_root); \ } \ (head)->sph_root = (elm); \ return (NULL); \} \ \struct type * \name##_SPLAY_REMOVE(struct name *head, struct type *elm) \{ \ struct type *__tmp; \ if (SPLAY_EMPTY(head)) \ return (NULL); \ name##_SPLAY(head, elm); \ if ((cmp)(elm, (head)->sph_root) == 0) { \ if (SPLAY_LEFT((head)->sph_root, field) == NULL) { \ (head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);\ } else { \ __tmp = SPLAY_RIGHT((head)->sph_root, field); \ (head)->sph_root = SPLAY_LEFT((head)->sph_root, field);\ name##_SPLAY(head, elm); \ SPLAY_RIGHT((head)->sph_root, field) = __tmp; \ } \ return (elm); \ } \ return (NULL); \} \ \void \name##_SPLAY(struct name *head, struct type *elm) \{ \ struct type __node, *__left, *__right, *__tmp; \ int __comp; \\ SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\ __left = __right = &__node; \\ while ((__comp = (cmp)(elm, (head)->sph_root))) { \ if (__comp < 0) { \ __tmp = SPLAY_LEFT((head)->sph_root, field); \ if (__tmp == NULL) \ break; \ if ((cmp)(elm, __tmp) < 0){ \ SPLAY_ROTATE_RIGHT(head, __tmp, field); \ if (SPLAY_LEFT((head)->sph_root, field) == NULL)\ break; \ } \ SPLAY_LINKLEFT(head, __right, field); \ } else if (__comp > 0) { \ __tmp = SPLAY_RIGHT((head)->sph_root, field); \ if (__tmp == NULL) \ break; \ if ((cmp)(elm, __tmp) > 0){ \ SPLAY_ROTATE_LEFT(head, __tmp, field); \ if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\ break; \ } \ SPLAY_LINKRIGHT(head, __left, field); \ } \ } \ SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \} \ \/* Splay with either the minimum or the maximum element \ * Used to find minimum or maximum element in tree. \ */ \void name##_SPLAY_MINMAX(struct name *head, int __comp) \{ \ struct type __node, *__left, *__right, *__tmp; \\ SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\ __left = __right = &__node; \\ while (1) { \ if (__comp < 0) { \ __tmp = SPLAY_LEFT((head)->sph_root, field); \ if (__tmp == NULL) \ break; \ if (__comp < 0){ \ SPLAY_ROTATE_RIGHT(head, __tmp, field); \ if (SPLAY_LEFT((head)->sph_root, field) == NULL)\ break; \ } \ SPLAY_LINKLEFT(head, __right, field); \ } else if (__comp > 0) { \ __tmp = SPLAY_RIGHT((head)->sph_root, field); \ if (__tmp == NULL) \ break; \ if (__comp > 0) { \ SPLAY_ROTATE_LEFT(head, __tmp, field); \ if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\ break; \ } \ SPLAY_LINKRIGHT(head, __left, field); \ } \ } \ SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \}#define SPLAY_NEGINF -1#define SPLAY_INF 1#define SPLAY_INSERT(name, x, y) name##_SPLAY_INSERT(x, y)#define SPLAY_REMOVE(name, x, y) name##_SPLAY_REMOVE(x, y)#define SPLAY_FIND(name, x, y) name##_SPLAY_FIND(x, y)#define SPLAY_NEXT(name, x, y) name##_SPLAY_NEXT(x, y)#define SPLAY_MIN(name, x) (SPLAY_EMPTY(x) ? NULL \ : name##_SPLAY_MIN_MAX(x, SPLAY_NEGINF))#define SPLAY_MAX(name, x) (SPLAY_EMPTY(x) ? NULL \ : name##_SPLAY_MIN_MAX(x, SPLAY_INF))#define SPLAY_FOREACH(x, name, head) \ for ((x) = SPLAY_MIN(name, head); \ (x) != NULL; \ (x) = SPLAY_NEXT(name, head, x))/* Macros that define a red-back tree */#define RB_HEAD(name, type) \struct name { \ struct type *rbh_root; /* root of the tree */ \}#define RB_INITIALIZER(root) \ { NULL }#define RB_INIT(root) do { \ (root)->rbh_root = NULL; \} while (0)#define RB_BLACK 0#define RB_RED 1#define RB_ENTRY(type) \struct { \ struct type *rbe_left; /* left element */ \ struct type *rbe_right; /* right element */ \ struct type *rbe_parent; /* parent element */ \ int rbe_color; /* node color */ \}#define RB_LEFT(elm, field) (elm)->field.rbe_left#define RB_RIGHT(elm, field) (elm)->field.rbe_right#define RB_PARENT(elm, field) (elm)->field.rbe_parent#define RB_COLOR(elm, field) (elm)->field.rbe_color#define RB_ROOT(head) (head)->rbh_root#define RB_EMPTY(head) (RB_ROOT(head) == NULL)#define RB_SET(elm, parent, field) do { \ RB_PARENT(elm, field) = parent; \ RB_LEFT(elm, field) = RB_RIGHT(elm, field) = NULL; \ RB_COLOR(elm, field) = RB_RED; \} while (0)#define RB_SET_BLACKRED(black, red, field) do { \ RB_COLOR(black, field) = RB_BLACK; \ RB_COLOR(red, field) = RB_RED; \} while (0)#ifndef RB_AUGMENT#define RB_AUGMENT(x)#endif#define RB_ROTATE_LEFT(head, elm, tmp, field) do { \ (tmp) = RB_RIGHT(elm, field); \ if ((RB_RIGHT(elm, field) = RB_LEFT(tmp, field))) { \ RB_PARENT(RB_LEFT(tmp, field), field) = (elm); \ } \
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -