📄 svm.xml
字号:
<summary>
Degree in kernel function (default 3).
</summary>
</member>
<member name="P:SVM.Parameter.Gamma">
<summary>
Gamma in kernel function (default 1/k)
</summary>
</member>
<member name="P:SVM.Parameter.Coefficient0">
<summary>
Zeroeth coefficient in kernel function (default 0)
</summary>
</member>
<member name="P:SVM.Parameter.CacheSize">
<summary>
Cache memory size in MB (default 100)
</summary>
</member>
<member name="P:SVM.Parameter.EPS">
<summary>
Tolerance of termination criterion (default 0.001)
</summary>
</member>
<member name="P:SVM.Parameter.C">
<summary>
The parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)
</summary>
</member>
<member name="P:SVM.Parameter.WeightCount">
<summary>
Number of weights.
</summary>
</member>
<member name="P:SVM.Parameter.WeightLabels">
<summary>
Array of indicies corresponding to the Weights array (for C-SVC)
</summary>
</member>
<member name="P:SVM.Parameter.Weights">
<summary>
The parameter C of class i to weight*C in C-SVC (default 1)
</summary>
</member>
<member name="P:SVM.Parameter.Nu">
<summary>
The parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)
</summary>
</member>
<member name="P:SVM.Parameter.P">
<summary>
The epsilon in loss function of epsilon-SVR (default 0.1)
</summary>
</member>
<member name="P:SVM.Parameter.Shrinking">
<summary>
Whether to use the shrinking heuristics, (default True)
</summary>
</member>
<member name="P:SVM.Parameter.Probability">
<summary>
Whether to train an SVC or SVR model for probability estimates, (default False)
</summary>
</member>
<member name="T:SVM.Node">
<summary>
Encapsulates a node in a Problem vector, with an index and a value (for more efficient representation
of sparse data.
</summary>
</member>
<member name="M:SVM.Node.#ctor">
<summary>
Default Constructor.
</summary>
</member>
<member name="M:SVM.Node.#ctor(System.Int32,System.Double)">
<summary>
Constructor.
</summary>
<param name="index">The index of the value.</param>
<param name="value">The value to store.</param>
</member>
<member name="M:SVM.Node.ToString">
<summary>
String representation of this Node as {index}:{value}.
</summary>
<returns>{index}:{value}</returns>
</member>
<member name="P:SVM.Node.Index">
<summary>
Index of this Node.
</summary>
</member>
<member name="P:SVM.Node.Value">
<summary>
Value at Index.
</summary>
</member>
<member name="T:SVM.Training">
<summary>
Class containing the routines to train SVM models.
</summary>
</member>
<member name="M:SVM.Training.Train(System.String[])">
<summary>
Legacy. Allows use as if this was svm_train. See libsvm documentation for details on which arguments to pass.
</summary>
<param name="args"></param>
</member>
<member name="M:SVM.Training.PerformCrossValidation(SVM.Problem,SVM.Parameter,System.Int32)">
<summary>
Performs cross validation.
</summary>
<param name="problem">The training data</param>
<param name="parameters">The parameters to test</param>
<param name="nrfold">The number of cross validations to use</param>
<returns>The cross validation score</returns>
</member>
<member name="M:SVM.Training.Train(SVM.Problem,SVM.Parameter)">
<summary>
Trains a model using the provided training data and parameters.
</summary>
<param name="problem">The training data</param>
<param name="parameters">The parameters to use</param>
<returns>A trained SVM Model</returns>
</member>
<member name="T:SVM.Model">
<summary>
Encapsulates an SVM Model.
</summary>
</member>
<member name="M:SVM.Model.Read(System.String)">
<summary>
Reads a Model from the provided file.
</summary>
<param name="filename">The name of the file containing the Model</param>
<returns>the Model</returns>
</member>
<member name="M:SVM.Model.Read(System.IO.Stream)">
<summary>
Reads a Model from the provided stream.
</summary>
<param name="stream">The stream from which to read the Model.</param>
<returns>the Model</returns>
</member>
<member name="M:SVM.Model.Write(System.String,SVM.Model)">
<summary>
Writes a model to the provided filename. This will overwrite any previous data in the file.
</summary>
<param name="filename">The desired file</param>
<param name="model">The Model to write</param>
</member>
<member name="M:SVM.Model.Write(System.IO.Stream,SVM.Model)">
<summary>
Writes a model to the provided stream.
</summary>
<param name="stream">The output stream</param>
<param name="model">The model to write</param>
</member>
<member name="P:SVM.Model.Parameter">
<summary>
Parameter object.
</summary>
</member>
<member name="P:SVM.Model.NumberOfClasses">
<summary>
Number of classes in the model.
</summary>
</member>
<member name="P:SVM.Model.SupportVectorCount">
<summary>
Total number of support vectors.
</summary>
</member>
<member name="P:SVM.Model.SupportVectors">
<summary>
The support vectors.
</summary>
</member>
<member name="P:SVM.Model.SupportVectorCoefficients">
<summary>
The coefficients for the support vectors.
</summary>
</member>
<member name="P:SVM.Model.Rho">
<summary>
Rho values.
</summary>
</member>
<member name="P:SVM.Model.PairwiseProbabilityA">
<summary>
First pairwise probability.
</summary>
</member>
<member name="P:SVM.Model.PairwiseProbabilityB">
<summary>
Second pairwise probability.
</summary>
</member>
<member name="P:SVM.Model.ClassLabels">
<summary>
Class labels.
</summary>
</member>
<member name="P:SVM.Model.NumberOfSVPerClass">
<summary>
Number of support vectors per class.
</summary>
</member>
<member name="T:SVM.Scaling">
<summary>
Deals with the scaling of Problems so they have uniform ranges across all dimensions in order to
result in better SVM performance.
</summary>
</member>
<member name="F:SVM.Scaling.DEFAULT_LOWER_BOUND">
<summary>
Default lower bound for scaling (-1).
</summary>
</member>
<member name="F:SVM.Scaling.DEFAULT_UPPER_BOUND">
<summary>
Default upper bound for scaling (1).
</summary>
</member>
<member name="M:SVM.Scaling.DetermineRange(SVM.Problem)">
<summary>
Determines the Range transform for the provided problem. Uses the default lower and upper bounds.
</summary>
<param name="prob">The Problem to analyze</param>
<returns>The Range transform for the problem</returns>
</member>
<member name="M:SVM.Scaling.DetermineRangeTransform(SVM.Problem,System.Double,System.Double)">
<summary>
Determines the Range transform for the provided problem.
</summary>
<param name="prob">The Problem to analyze</param>
<param name="lowerBound">The lower bound for scaling</param>
<param name="upperBound">The upper bound for scaling</param>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -