📄 jsdtoa.c
字号:
ULong borrow, carry, y, ys; ULong si, z, zs;#endif n = S->wds; JS_ASSERT(b->wds <= n); if (b->wds < n) return 0; sx = S->x; sxe = sx + --n; bx = b->x; bxe = bx + n; JS_ASSERT(*sxe <= 0x7FFFFFFF); q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ JS_ASSERT(q < 36); if (q) { borrow = 0; carry = 0; do {#ifdef ULLong ys = *sx++ * (ULLong)q + carry; carry = ys >> 32; y = *bx - (ys & 0xffffffffUL) - borrow; borrow = y >> 32 & 1UL; *bx++ = (ULong)(y & 0xffffffffUL);#else si = *sx++; ys = (si & 0xffff) * q + carry; zs = (si >> 16) * q + (ys >> 16); carry = zs >> 16; y = (*bx & 0xffff) - (ys & 0xffff) - borrow; borrow = (y & 0x10000) >> 16; z = (*bx >> 16) - (zs & 0xffff) - borrow; borrow = (z & 0x10000) >> 16; Storeinc(bx, z, y);#endif } while(sx <= sxe); if (!*bxe) { bx = b->x; while(--bxe > bx && !*bxe) --n; b->wds = n; } } if (cmp(b, S) >= 0) { q++; borrow = 0; carry = 0; bx = b->x; sx = S->x; do {#ifdef ULLong ys = *sx++ + carry; carry = ys >> 32; y = *bx - (ys & 0xffffffffUL) - borrow; borrow = y >> 32 & 1UL; *bx++ = (ULong)(y & 0xffffffffUL);#else si = *sx++; ys = (si & 0xffff) + carry; zs = (si >> 16) + (ys >> 16); carry = zs >> 16; y = (*bx & 0xffff) - (ys & 0xffff) - borrow; borrow = (y & 0x10000) >> 16; z = (*bx >> 16) - (zs & 0xffff) - borrow; borrow = (z & 0x10000) >> 16; Storeinc(bx, z, y);#endif } while(sx <= sxe); bx = b->x; bxe = bx + n; if (!*bxe) { while(--bxe > bx && !*bxe) --n; b->wds = n; } } return (int32)q;}/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. * * Inspired by "How to Print Floating-Point Numbers Accurately" by * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101]. * * Modifications: * 1. Rather than iterating, we use a simple numeric overestimate * to determine k = floor(log10(d)). We scale relevant * quantities using O(log2(k)) rather than O(k) multiplications. * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't * try to generate digits strictly left to right. Instead, we * compute with fewer bits and propagate the carry if necessary * when rounding the final digit up. This is often faster. * 3. Under the assumption that input will be rounded nearest, * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. * That is, we allow equality in stopping tests when the * round-nearest rule will give the same floating-point value * as would satisfaction of the stopping test with strict * inequality. * 4. We remove common factors of powers of 2 from relevant * quantities. * 5. When converting floating-point integers less than 1e16, * we use floating-point arithmetic rather than resorting * to multiple-precision integers. * 6. When asked to produce fewer than 15 digits, we first try * to get by with floating-point arithmetic; we resort to * multiple-precision integer arithmetic only if we cannot * guarantee that the floating-point calculation has given * the correctly rounded result. For k requested digits and * "uniformly" distributed input, the probability is * something like 10^(k-15) that we must resort to the Long * calculation. *//* Always emits at least one digit. *//* If biasUp is set, then rounding in modes 2 and 3 will round away from zero * when the number is exactly halfway between two representable values. For example, * rounding 2.5 to zero digits after the decimal point will return 3 and not 2. * 2.49 will still round to 2, and 2.51 will still round to 3. *//* bufsize should be at least 20 for modes 0 and 1. For the other modes, * bufsize should be two greater than the maximum number of output characters expected. */static JSBooljs_dtoa(double d, int mode, JSBool biasUp, int ndigits, int *decpt, int *sign, char **rve, char *buf, size_t bufsize){ /* Arguments ndigits, decpt, sign are similar to those of ecvt and fcvt; trailing zeros are suppressed from the returned string. If not null, *rve is set to point to the end of the return value. If d is +-Infinity or NaN, then *decpt is set to 9999. mode: 0 ==> shortest string that yields d when read in and rounded to nearest. 1 ==> like 0, but with Steele & White stopping rule; e.g. with IEEE P754 arithmetic , mode 0 gives 1e23 whereas mode 1 gives 9.999999999999999e22. 2 ==> max(1,ndigits) significant digits. This gives a return value similar to that of ecvt, except that trailing zeros are suppressed. 3 ==> through ndigits past the decimal point. This gives a return value similar to that from fcvt, except that trailing zeros are suppressed, and ndigits can be negative. 4-9 should give the same return values as 2-3, i.e., 4 <= mode <= 9 ==> same return as mode 2 + (mode & 1). These modes are mainly for debugging; often they run slower but sometimes faster than modes 2-3. 4,5,8,9 ==> left-to-right digit generation. 6-9 ==> don't try fast floating-point estimate (if applicable). Values of mode other than 0-9 are treated as mode 0. Sufficient space is allocated to the return value to hold the suppressed trailing zeros. */ int32 bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1, j, j1, k, k0, k_check, leftright, m2, m5, s2, s5, spec_case, try_quick; Long L;#ifndef Sudden_Underflow int32 denorm; ULong x;#endif Bigint *b, *b1, *delta, *mlo, *mhi, *S; double d2, ds, eps; char *s; if (word0(d) & Sign_bit) { /* set sign for everything, including 0's and NaNs */ *sign = 1; set_word0(d, word0(d) & ~Sign_bit); /* clear sign bit */ } else *sign = 0; if ((word0(d) & Exp_mask) == Exp_mask) { /* Infinity or NaN */ *decpt = 9999; s = !word1(d) && !(word0(d) & Frac_mask) ? "Infinity" : "NaN"; if ((s[0] == 'I' && bufsize < 9) || (s[0] == 'N' && bufsize < 4)) { JS_ASSERT(JS_FALSE);/* JS_SetError(JS_BUFFER_OVERFLOW_ERROR, 0); */ return JS_FALSE; } strcpy(buf, s); if (rve) { *rve = buf[3] ? buf + 8 : buf + 3; JS_ASSERT(**rve == '\0'); } return JS_TRUE; } b = NULL; /* initialize for abort protection */ S = NULL; mlo = mhi = NULL; if (!d) { no_digits: *decpt = 1; if (bufsize < 2) { JS_ASSERT(JS_FALSE);/* JS_SetError(JS_BUFFER_OVERFLOW_ERROR, 0); */ return JS_FALSE; } buf[0] = '0'; buf[1] = '\0'; /* copy "0" to buffer */ if (rve) *rve = buf + 1; /* We might have jumped to "no_digits" from below, so we need * to be sure to free the potentially allocated Bigints to avoid * memory leaks. */ Bfree(b); Bfree(S); if (mlo != mhi) Bfree(mlo); Bfree(mhi); return JS_TRUE; } b = d2b(d, &be, &bbits); if (!b) goto nomem;#ifdef Sudden_Underflow i = (int32)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));#else if ((i = (int32)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1))) != 0) {#endif d2 = d; set_word0(d2, word0(d2) & Frac_mask1); set_word0(d2, word0(d2) | Exp_11); /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 * log10(x) = log(x) / log(10) * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) * * This suggests computing an approximation k to log10(d) by * * k = (i - Bias)*0.301029995663981 * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); * * We want k to be too large rather than too small. * The error in the first-order Taylor series approximation * is in our favor, so we just round up the constant enough * to compensate for any error in the multiplication of * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, * adding 1e-13 to the constant term more than suffices. * Hence we adjust the constant term to 0.1760912590558. * (We could get a more accurate k by invoking log10, * but this is probably not worthwhile.) */ i -= Bias;#ifndef Sudden_Underflow denorm = 0; } else { /* d is denormalized */ i = bbits + be + (Bias + (P-1) - 1); x = i > 32 ? word0(d) << (64 - i) | word1(d) >> (i - 32) : word1(d) << (32 - i); d2 = x; set_word0(d2, word0(d2) - 31*Exp_msk1); /* adjust exponent */ i -= (Bias + (P-1) - 1) + 1; denorm = 1; }#endif /* At this point d = f*2^i, where 1 <= f < 2. d2 is an approximation of f. */ ds = (d2-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981; k = (int32)ds; if (ds < 0. && ds != k) k--; /* want k = floor(ds) */ k_check = 1; if (k >= 0 && k <= Ten_pmax) { if (d < tens[k]) k--; k_check = 0; } /* At this point floor(log10(d)) <= k <= floor(log10(d))+1. If k_check is zero, we're guaranteed that k = floor(log10(d)). */ j = bbits - i - 1; /* At this point d = b/2^j, where b is an odd integer. */ if (j >= 0) { b2 = 0; s2 = j; } else { b2 = -j; s2 = 0; } if (k >= 0) { b5 = 0; s5 = k; s2 += k; } else { b2 -= k; b5 = -k; s5 = 0; } /* At this point d/10^k = (b * 2^b2 * 5^b5) / (2^s2 * 5^s5), where b is an odd integer, b2 >= 0, b5 >= 0, s2 >= 0, and s5 >= 0. */ if (mode < 0 || mode > 9) mode = 0; try_quick = 1; if (mode > 5) { mode -= 4; try_quick = 0; } leftright = 1; ilim = ilim1 = 0; switch(mode) { case 0: case 1: ilim = ilim1 = -1; i = 18; ndigits = 0; break; case 2: leftright = 0; /* no break */ case 4: if (ndigits <= 0) ndigits = 1; ilim = ilim1 = i = ndigits; break; case 3: leftright = 0; /* no break */ case 5: i = ndigits + k + 1; ilim = i; ilim1 = i - 1; if (i <= 0) i = 1; } /* ilim is the maximum number of significant digits we want, based on k and ndigits. */ /* ilim1 is the maximum number of significant digits we want, based on k and ndigits, when it turns out that k was computed too high by one. */ /* Ensure space for at least i+1 characters, including trailing null. */ if (bufsize <= (size_t)i) { Bfree(b); JS_ASSERT(JS_FALSE); return JS_FALSE; } s = buf; if (ilim >= 0 && ilim <= Quick_max && try_quick) { /* Try to get by with floating-point arithmetic. */ i = 0; d2 = d; k0 = k; ilim0 = ilim; ieps = 2; /* conservative */ /* Divide d by 10^k, keeping track of the roundoff error and avoiding overflows. */ if (k > 0) { ds = tens[k&0xf]; j = k >> 4; if (j & Bletch) { /* prevent overflows */ j &= Bletch - 1; d /= bigtens[n_bigtens-1]; ieps++; } for(; j; j >>= 1, i++) if (j & 1) { ieps++; ds *= bigtens[i]; } d /= ds; } else if ((j1 = -k) != 0) { d *= tens[j1 & 0xf]; for(j = j1 >> 4; j; j >>= 1, i++) if (j & 1) { ieps++; d *= bigtens[i]; } } /* Check that k was computed correctly. */ if (k_check && d < 1. && ilim > 0) { if (ilim1 <= 0) goto fast_failed; ilim = ilim1; k--; d *= 10.; ieps++; } /* eps bounds the cumulative error. */ eps = ieps*d + 7.; set_word0(eps, word0(eps) - (P-1)*Exp_msk1); if (ilim == 0) { S = mhi = 0; d -= 5.; if (d > eps) goto one_digit; if (d < -eps) goto no_digits; goto fast_failed; }#ifndef No_leftright if (leftright) { /* Use Steele & White method of only * generating digits needed. */ eps = 0.5/tens[ilim-1] - eps; for(i = 0;;) { L = (Long)d; d -= L; *s++ = '0' + (char)L; if (d < eps) goto ret1; if (1. - d < eps) goto bump_up; if (++i >= ilim) break; eps *= 10.; d *= 10.; } } else {#endif /* Generate ilim digits, then fix them up. */ eps *= tens[ilim-1]; for(i = 1;; i++, d *= 10.) { L = (Long)d; d -= L; *s++ = '0' + (char)L; if (i == ilim) { if (d > 0.5 + eps) goto bump_up; else if (d < 0.5 - eps) { while(*--s == '0') ; s++; goto ret1; } break; } }#ifndef No_leftright }#endif fast_failed: s = buf; d = d2; k = k0; ilim = ilim0; } /* Do we have a "small" integer? */ if (be >= 0 && k <= Int_max) { /* Yes. */ ds = tens[k]; if (ndigits < 0 && ilim <= 0) { S = mhi = 0; if (ilim < 0 || d < 5*ds || (!biasUp && d == 5*ds)) goto no_digits; goto one_digit; } /* Use true number of digits to limit looping. */ for(i = 1; i<=k+1; i++) { L = (Long) (d / ds); d -= L*ds;#ifdef Check_FLT_ROUNDS /* If FLT_ROUNDS == 2, L will usually be high by 1 */ if (d < 0) {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -