⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 e_log.c

📁 java script test programing source code
💻 C
字号:
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- * * ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is Mozilla Communicator client code, released * March 31, 1998. * * The Initial Developer of the Original Code is * Sun Microsystems, Inc. * Portions created by the Initial Developer are Copyright (C) 1998 * the Initial Developer. All Rights Reserved. * * Contributor(s): * * Alternatively, the contents of this file may be used under the terms of * either of the GNU General Public License Version 2 or later (the "GPL"), * or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** *//* @(#)e_log.c 1.3 95/01/18 *//* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice  * is preserved. * ==================================================== *//* __ieee754_log(x) * Return the logrithm of x * * Method :                   *   1. Argument Reduction: find k and f such that  *			x = 2^k * (1+f),  *	   where  sqrt(2)/2 < 1+f < sqrt(2) . * *   2. Approximation of log(1+f). *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) *		 = 2s + 2/3 s**3 + 2/5 s**5 + ....., *	     	 = 2s + s*R *      We use a special Reme algorithm on [0,0.1716] to generate  * 	a polynomial of degree 14 to approximate R The maximum error  *	of this polynomial approximation is bounded by 2**-58.45. In *	other words, *		        2      4      6      8      10      12      14 *	    R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s *  	(the values of Lg1 to Lg7 are listed in the program) *	and *	    |      2          14          |     -58.45 *	    | Lg1*s +...+Lg7*s    -  R(z) | <= 2  *	    |                             | *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. *	In order to guarantee error in log below 1ulp, we compute log *	by *		log(1+f) = f - s*(f - R)	(if f is not too large) *		log(1+f) = f - (hfsq - s*(hfsq+R)).	(better accuracy) *	 *	3. Finally,  log(x) = k*ln2 + log(1+f).   *			    = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) *	   Here ln2 is split into two floating point number:  *			ln2_hi + ln2_lo, *	   where n*ln2_hi is always exact for |n| < 2000. * * Special cases: *	log(x) is NaN with signal if x < 0 (including -INF) ;  *	log(+INF) is +INF; log(0) is -INF with signal; *	log(NaN) is that NaN with no signal. * * Accuracy: *	according to an error analysis, the error is always less than *	1 ulp (unit in the last place). * * Constants: * The hexadecimal values are the intended ones for the following  * constants. The decimal values may be used, provided that the  * compiler will convert from decimal to binary accurately enough  * to produce the hexadecimal values shown. */#include "fdlibm.h"#ifdef __STDC__static const double#elsestatic double#endifln2_hi  =  6.93147180369123816490e-01,	/* 3fe62e42 fee00000 */ln2_lo  =  1.90821492927058770002e-10,	/* 3dea39ef 35793c76 */two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */static double zero   =  0.0;#ifdef __STDC__	double __ieee754_log(double x)#else	double __ieee754_log(x)	double x;#endif{        fd_twoints u;	double hfsq,f,s,z,R,w,t1,t2,dk;	int k,hx,i,j;	unsigned lx;        u.d = x;	hx = __HI(u);		/* high word of x */	lx = __LO(u);		/* low  word of x */	k=0;	if (hx < 0x00100000) {			/* x < 2**-1022  */	    if (((hx&0x7fffffff)|lx)==0) 		return -two54/zero;		/* log(+-0)=-inf */	    if (hx<0) return (x-x)/zero;	/* log(-#) = NaN */	    k -= 54; x *= two54; /* subnormal number, scale up x */            u.d = x;	    hx = __HI(u);		/* high word of x */	} 	if (hx >= 0x7ff00000) return x+x;	k += (hx>>20)-1023;	hx &= 0x000fffff;	i = (hx+0x95f64)&0x100000;        u.d = x;	__HI(u) = hx|(i^0x3ff00000);	/* normalize x or x/2 */        x = u.d;	k += (i>>20);	f = x-1.0;	if((0x000fffff&(2+hx))<3) {	/* |f| < 2**-20 */	    if(f==zero) {                 if(k==0) return zero; else {dk=(double)k;                                            return dk*ln2_hi+dk*ln2_lo;}             }	    R = f*f*(0.5-0.33333333333333333*f);	    if(k==0) return f-R; else {dk=(double)k;	    	     return dk*ln2_hi-((R-dk*ln2_lo)-f);}	} 	s = f/(2.0+f); 	dk = (double)k;	z = s*s;	i = hx-0x6147a;	w = z*z;	j = 0x6b851-hx;	t1= w*(Lg2+w*(Lg4+w*Lg6)); 	t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); 	i |= j;	R = t2+t1;	if(i>0) {	    hfsq=0.5*f*f;	    if(k==0) return f-(hfsq-s*(hfsq+R)); else		     return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);	} else {	    if(k==0) return f-s*(f-R); else		     return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);	}}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -