⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 e_exp.c

📁 java script test programing source code
💻 C
字号:
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- * * ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is Mozilla Communicator client code, released * March 31, 1998. * * The Initial Developer of the Original Code is * Sun Microsystems, Inc. * Portions created by the Initial Developer are Copyright (C) 1998 * the Initial Developer. All Rights Reserved. * * Contributor(s): * * Alternatively, the contents of this file may be used under the terms of * either of the GNU General Public License Version 2 or later (the "GPL"), * or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** *//* @(#)e_exp.c 1.3 95/01/18 *//* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice  * is preserved. * ==================================================== *//* __ieee754_exp(x) * Returns the exponential of x. * * Method *   1. Argument reduction: *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. *	Given x, find r and integer k such that * *               x = k*ln2 + r,  |r| <= 0.5*ln2.   * *      Here r will be represented as r = hi-lo for better  *	accuracy. * *   2. Approximation of exp(r) by a special rational function on *	the interval [0,0.34658]: *	Write *	    R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... *      We use a special Reme algorithm on [0,0.34658] to generate  * 	a polynomial of degree 5 to approximate R. The maximum error  *	of this polynomial approximation is bounded by 2**-59. In *	other words, *	    R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 *  	(where z=r*r, and the values of P1 to P5 are listed below) *	and *	    |                  5          |     -59 *	    | 2.0+P1*z+...+P5*z   -  R(z) | <= 2  *	    |                             | *	The computation of exp(r) thus becomes *                             2*r *		exp(r) = 1 + ------- *		              R - r *                                 r*R1(r)	 *		       = 1 + r + ----------- (for better accuracy) *		                  2 - R1(r) *	where *			         2       4             10 *		R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ). *	 *   3. Scale back to obtain exp(x): *	From step 1, we have *	   exp(x) = 2^k * exp(r) * * Special cases: *	exp(INF) is INF, exp(NaN) is NaN; *	exp(-INF) is 0, and *	for finite argument, only exp(0)=1 is exact. * * Accuracy: *	according to an error analysis, the error is always less than *	1 ulp (unit in the last place). * * Misc. info. *	For IEEE double  *	    if x >  7.09782712893383973096e+02 then exp(x) overflow *	    if x < -7.45133219101941108420e+02 then exp(x) underflow * * Constants: * The hexadecimal values are the intended ones for the following  * constants. The decimal values may be used, provided that the  * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */#include "fdlibm.h"#ifdef __STDC__static const double#elsestatic double#endifone	= 1.0,halF[2]	= {0.5,-0.5,},really_big	= 1.0e+300,twom1000= 9.33263618503218878990e-302,     /* 2**-1000=0x01700000,0*/o_threshold=  7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */u_threshold= -7.45133219101941108420e+02,  /* 0xc0874910, 0xD52D3051 */ln2HI[2]   ={ 6.93147180369123816490e-01,  /* 0x3fe62e42, 0xfee00000 */	     -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */ln2LO[2]   ={ 1.90821492927058770002e-10,  /* 0x3dea39ef, 0x35793c76 */	     -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */invln2 =  1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */#ifdef __STDC__	double __ieee754_exp(double x)	/* default IEEE double exp */#else	double __ieee754_exp(x)	/* default IEEE double exp */	double x;#endif{        fd_twoints u;	double y,hi,lo,c,t;	int k, xsb;	unsigned hx;        u.d = x;	hx  = __HI(u);	/* high word of x */	xsb = (hx>>31)&1;		/* sign bit of x */	hx &= 0x7fffffff;		/* high word of |x| */    /* filter out non-finite argument */	if(hx >= 0x40862E42) {			/* if |x|>=709.78... */            if(hx>=0x7ff00000) {                u.d = x;		if(((hx&0xfffff)|__LO(u))!=0)		     return x+x; 		/* NaN */		else return (xsb==0)? x:0.0;	/* exp(+-inf)={inf,0} */	    }	    if(x > o_threshold) return really_big*really_big; /* overflow */	    if(x < u_threshold) return twom1000*twom1000; /* underflow */	}    /* argument reduction */	if(hx > 0x3fd62e42) {		/* if  |x| > 0.5 ln2 */ 	    if(hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */		hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;	    } else {		k  = (int)(invln2*x+halF[xsb]);		t  = k;		hi = x - t*ln2HI[0];	/* t*ln2HI is exact here */		lo = t*ln2LO[0];	    }	    x  = hi - lo;	} 	else if(hx < 0x3e300000)  {	/* when |x|<2**-28 */	    if(really_big+x>one) return one+x;/* trigger inexact */	}	else k = 0;    /* x is now in primary range */	t  = x*x;	c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));	if(k==0) 	return one-((x*c)/(c-2.0)-x); 	else 		y = one-((lo-(x*c)/(2.0-c))-hi);	if(k >= -1021) {            u.d = y;	    __HI(u) += (k<<20);	/* add k to y's exponent */            y = u.d;	    return y;	} else {            u.d = y;	    __HI(u) += ((k+1000)<<20);/* add k to y's exponent */            y = u.d;	    return y*twom1000;	}}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -