⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 utlab.h

📁 清华大学不确定规划教材中的用遗传算法训练神经元网络的混合智能算法1
💻 H
字号:
// Random Number Generation & Useful subfunctions
// Written by Microsoft Visual C++
// Copyright by UTLab, Tsinghua University
// http://orsc.edu.cn/UTLab

double myu(double a, double b) // Uniform Distribution
{
  double y;
  if(a>b) {
	printf("\nThe first parameter should be less than the second!");
	exit(1);
  }
  y = (double)rand()/(RAND_MAX);
  return (a+(b-a)*y); 
}

double myexp(double beta) // Exponential Distribution
{
  double u;
  do {
     u = myu(0,1);
  }  while(u<=0||u>=1);
  return (-1*beta*log(u));
}

double myn(double mu, double sigma2) // Normal Distribution
{
  double mu1, mu2, z;
  do {
    mu1 = myu(0,1);
    mu2 = myu(0,1);
  } while (mu1<=0||mu1>=1);
  z = sqrt(-2*log(mu1))*sin(2*3.14159*mu2);
  return (mu+sqrt(sigma2)*z);
}

double randomoptimistic(double *p, int samplenumber, double alpha)
{       
  int i, j;
  double w;
  for(i=1; i<=samplenumber; i++)
    for(j=i+1; j<=samplenumber; j++) 
      if(*(p+i) < *(p+j)) {
         w = *(p+j);
	     *(p+j) = *(p+i);
	     *(p+i) = w;
      }
  return *(p+(int)(alpha*samplenumber));
}

double randompessimistic(double *p, int samplenumber, double alpha)
{
  int i, j;
  double w;
  for(i=1; i<=samplenumber; i++)
    for(j=i+1; j<=samplenumber; j++) 
      if(*(p+i) > *(p+j)) {
         w = *(p+j);
	     *(p+j) = *(p+i);
	     *(p+i) = w;
      }
  return *(p+(int)(alpha*samplenumber));
}

double triangle(double x, double a, double b, double c)
{
  if(a<x&&x<b) return (x-a)/(b-a);
  if(b<=x&&x<c) return (x-c)/(b-c);
  return 0;
}

double trapezoidal(double x, double a, double b, double c, double d)
{
  if(a<x&&x<b) return (x-a)/(b-a);
  if(b<=x&&x<=c) return 1;
  if(c<x&&x<d) return (x-d)/(c-d);
  return 0;
}

double fuzzyoptimistic(double x[], double mu[], int samplenumber, double alpha)
 {
   double v1, v2, v, xx, min, max;
   int    i;
   
   min=x[1];
   max=x[1];
   for(i=2; i<=samplenumber; i++) {
       if(min>x[i]) min=x[i];
	   if(max<x[i]) max=x[i];
   }
	
   do {
       	xx=(min+max)/2;
        v1=0;
		v2=0;
		for(i=1; i<=samplenumber; i++)  {
  	       if((x[i]>=xx)&&(v1<mu[i])) v1=mu[i];
	       if((x[i]<xx)&&(v2<mu[i]))  v2=mu[i];
		}
        if(v1>v2) v1=1; else v2=1;
        v=(v1+1-v2)/2;
        if(v>=alpha) min=xx;
    	else max=xx;
   }while((max-min)>0.0001);
 
   return (max+min)/2;
}

double fuzzypessimistic(double x[], double mu[], int samplenumber, double alpha)
 {
   double v1, v2, v, xx, min, max;
   int    i;
  
   min=x[1];
   max=x[1];
   for(i=2; i<=samplenumber; i++) {
       if(min>x[i]) min=x[i];
	   if(max<x[i]) max=x[i];
   }
   
   do {
       	xx=(min+max)/2;
        v1=0;
		v2=0;

		for(i=1; i<=samplenumber; i++)  {
   	       if((x[i]<=xx)&&(mu[i]>v1)) v1=mu[i];
	       if((x[i]>xx)&&(mu[i]>v2))  v2=mu[i];
		}
        if(v1>v2) v1=1; else v2=1;
        v=(v1+1-v2)/2;
        if(v>=alpha) max=xx;
     	else min=xx;
   }while((max-min)>0.0001);
 
   return (max+min)/2;
}

double credibility(double x[], double mu[], int samplenumber, char relation, double a)
 {
   double v1=0, v2=0;
   int    i;

   if(relation=='<')
      for(i=1; i<=samplenumber; i++)  {
   	     if((x[i]<=a)&&(v1<mu[i])) v1=mu[i];
	     if((x[i]>a)&&(v2<mu[i])) v2=mu[i];
	  }
   if(relation=='>')
      for(i=1; i<=samplenumber; i++)  {
   	     if((x[i]>=a)&&(v1<mu[i])) v1=mu[i];
	     if((x[i]<a)&&(v2<mu[i])) v2=mu[i];
	  }
   if(v1>v2) v1=1; else v2=1;
   return (v1+1-v2)/2;
}

double fuzzymean(double x[], double mu[], int samplenumber, int integralnumber=2000)
{
	int i,k;
	double Expect=0, left, right, b1, b2, r;
	
	left=x[1];
	right=x[1];
	for(i=2;i<=samplenumber;i++) {
	  if(left>x[i]) left=x[i];
	  if(right<x[i]) right=x[i];
	}
	for(k=1; k<=integralnumber; k++) {
	  r=myu(left,right);
	  b1=0;
	  b2=0;
	  if(r>=0) {
		for(i=1; i<=samplenumber; i++) {
		  if(x[i]>=r&&b1<mu[i]) b1 = mu[i];
		  if(x[i]<r&&b2<mu[i]) b2 = mu[i];
		}		
		Expect = Expect+(b1+1-b2)/2.0;
	  }
	  else {
		for(i=1; i<=samplenumber; i++) {
		  if(x[i]<=r&&b1<mu[i]) b1 = mu[i];
		  if(x[i]>r&&b2<mu[i]) b2 = mu[i];
		}		
		Expect = Expect-(b1+1-b2)/2.0;
	  }
	}
	return Expect*(right-left)/integralnumber+((left>0)?left:0)+((right<0)?right:0);
}


////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////



void sortminmax(double *p,int min,int max)
{
  int i,j;
  double w;
  for(i=min; i<max; i++)
    for(j=i+1; j<=max; j++)
       if(*(p+i) > *(p+j)) {
	      w = *(p+i);
	      *(p+i) = *(p+j);
	      *(p+j) = w;
       }
}

void sortmaxmin(double *p,int min,int max)
{
  int i, j;
  double w;
  for(i=min; i<max; i++)
    for(j=i+1; j<=max; j++)
      if(*(p+i) < *(p+j)) {
         w = *(p+i);
	     *(p+i) = *(p+j);
	     *(p+j) = w;
      }
}

double findmaxn(double *p,int min,int max,int n)
{
  int i, j;
  double w;
  for(i=min; i<=n; i++)
    for(j=i+1; j<=max; j++) 
      if(*(p+i) < *(p+j)) {
         w = *(p+j);
	     *(p+j) = *(p+i);
	     *(p+i) = w;
      }
  return *(p+n);
}

double findminn(double *p,int min,int max,int n)
{
  int i, j;
  double w;
  for(i=min; i<=n; i++)
    for(j=i+1; j<=max; j++) 
      if(*(p+i) > *(p+j)) {
         w = *(p+j);
	     *(p+j) = *(p+i);
	     *(p+i) = w;
      }
  return *(p+n);
}

int mybe(double p) // Bernoulli Distribution
{
  if(p>1||p<0) {
	 printf("\nParameter is out of bound!\n");
	 exit(1);
  }
  if(myu(0,1)<=p) return 1;
  else return 0;
}


int mybn(int n, double p)
{
 int i, y=0;
 for(i=1; i<=n; i++)
	y=y+mybe(p);
 return y;
}


double myc(double alpha, double beta)
{
  double u;
  do {
	 u = myu(0,1);
  } while (u<=0);
  return (alpha-beta/tan(3.14159*u));
}


double myemp(double *a,int n) // Empirical Distribution
{
 int i,m;
 double mu;
 for(i=1;i<n;i++)
   {
	if(a[i-1]>a[i])
	  {
	   printf("\nThe observations should be ordered from small to large!\n");
	   exit(1);
	  }
   }
 mu=myu(0,1);
 m=(int)((n-1)*mu+1);
 return (a[m-1]+((n-1)*mu-m+1)*(a[m]-a[m-1]));
}


double mychi(int k)
{
  int i;
  double z,y=0;
  if(k<1)
	{
	 printf("\nThe parameter should be a integer larger than zero!\n");
	 exit(1);
	}
  for(i=1;i<=k;i++)
	{
	 z=myn(0,1);
	 y=y+z*z;
	}
  return y;
}


double myf(int k1, int k2)
{
  double y1, y2;
  y1 = mychi(k1);
  for(;;){
  y2 = mychi(k2);
  if(y2!=0) break;
  }
  return((y1/k1)/(y2/k2));
}


double mys(int k)
{
  double y, z;
  z = myn(0,1);
  y = mychi(k);
  return (z/sqrt(y/k));
}

double myer(int k,double beta)
{
 int i;
 double y;
 y=0;
 if(k<=0)
   {
	printf("\nThe first parameter should be a integer larger than zero!\n");
	exit(1);
   }
 for(i=1;i<=k;i++)
   y=y+myexp(beta);
 return y;
}


double myg(double alpha, double beta)
{
  double x, v;
  x = 0;
  if(alpha<=0||beta<=0)
	{
	 printf("\nParameter should all larger than zero!\n");
	 exit(1);
	}
  mark:
  v = myexp(1);
  x = x + v;
  if(alpha == 1) {
	 x = beta*x;
	 return x;
  }
  alpha = alpha -1;
  goto mark;
}


double myb(int alpha, int beta)
{
  double y1, y2;
  y1 = myg(alpha,1);
  y2 = myg(beta,1);
  return (y1/(y1+y2));
}


double myw(double alpha, double beta)
{
  double v;
  if(alpha<=0||beta<=0)
	{
	 printf("\nParameter should all larger than zero!\n");
	 exit(1);
	}
  v = myexp(1);
  return (beta*pow(v,(1/alpha)));
}


int myge(double p)
{
 int x;
 double r;
 if(p>=1||p<=0)
	{
	 printf("\nParameter is out of bound!\n");
	 exit(1);
	}
 do {
	r=myu(0,1);
 } while (r<=0||r>=1);
 x= (int)(log(r)/log(1-p));
 return x;
}


int mynb(int k,double p)
{
 int i,y;
 if(k<=0)
   {
	printf("\nThe first parameter should be a integer larger than zero!\n");
	exit(1);
   }
 y=0;
 for(i=1;i<=k;i++)
   y=y+myge(p);
 return y;
}


double myl(double a,double b) 
{
  double mu;
   do {
    mu = myu(0,1);
    } while (mu<=0||mu>=1);
  return(a-b*log(1/mu-1));
}

int myp(double lamd) // Poisson Distribution
{
 int x;
 double b,u;
 if(lamd<=0)
   {
	printf("\nThe parameter should be larger than zero!\n");
	exit(1);
   }
 x=0;
 b=1;
 do
   {
	u=myu(0,1);
	b=b*u;
	x=x+1;
   }while(b>=exp(-lamd));
 return(x-1);
}

double mynormal(double x, double c, double w)
{
	return(exp(-(x-c)*(x-c)/(w*w)));
}

double mylogn(double mu, double sigma2) // Lognormal Distribution
{
  double z;
  z = myn(mu,sigma2);
  return (exp(z));
}

double myt(double a,double b,double m) // Triangular Distribution
{
 double c,u,y;
 if(a>=m||m>=b) {
	printf("\nThe first parameter should be the smallest!");
	printf("\nAnd the second one should be the largest!\n");
	exit(1);
   }
 c=(m-a)/(b-a);
 u=myu(0,1);
 if(u<c)
   y=sqrt(c*u);
 else
   y=1-sqrt((1-c)*(1-u));
 return(a+(b-a)*y);
}

double randommean(double x[], int samplenumber)
{
	int i;
	double Expect=0;
	
	for(i=1;i<=samplenumber;i++) 
		Expect=Expect+x[i];

	return Expect/samplenumber;
}


⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -