📄 sonic.c
字号:
/* * Simple free lossless/lossy audio codec * Copyright (c) 2004 Alex Beregszaszi * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */#include "avcodec.h"#include "bitstream.h"#include "golomb.h"/** * @file sonic.c * Simple free lossless/lossy audio codec * Based on Paul Francis Harrison's Bonk (http://www.logarithmic.net/pfh/bonk) * Written and designed by Alex Beregszaszi * * TODO: * - CABAC put/get_symbol * - independent quantizer for channels * - >2 channels support * - more decorrelation types * - more tap_quant tests * - selectable intlist writers/readers (bonk-style, golomb, cabac) */#define MAX_CHANNELS 2#define MID_SIDE 0#define LEFT_SIDE 1#define RIGHT_SIDE 2typedef struct SonicContext { int lossless, decorrelation; int num_taps, downsampling; double quantization; int channels, samplerate, block_align, frame_size; int *tap_quant; int *int_samples; int *coded_samples[MAX_CHANNELS]; // for encoding int *tail; int tail_size; int *window; int window_size; // for decoding int *predictor_k; int *predictor_state[MAX_CHANNELS];} SonicContext;#define LATTICE_SHIFT 10#define SAMPLE_SHIFT 4#define LATTICE_FACTOR (1 << LATTICE_SHIFT)#define SAMPLE_FACTOR (1 << SAMPLE_SHIFT)#define BASE_QUANT 0.6#define RATE_VARIATION 3.0static inline int divide(int a, int b){ if (a < 0) return -( (-a + b/2)/b ); else return (a + b/2)/b;}static inline int shift(int a,int b){ return (a+(1<<(b-1))) >> b;}static inline int shift_down(int a,int b){ return (a>>b)+((a<0)?1:0);}#if 1static inline int intlist_write(PutBitContext *pb, int *buf, int entries, int base_2_part){ int i; for (i = 0; i < entries; i++) set_se_golomb(pb, buf[i]); return 1;}static inline int intlist_read(GetBitContext *gb, int *buf, int entries, int base_2_part){ int i; for (i = 0; i < entries; i++) buf[i] = get_se_golomb(gb); return 1;}#else#define ADAPT_LEVEL 8static int bits_to_store(uint64_t x){ int res = 0; while(x) { res++; x >>= 1; } return res;}static void write_uint_max(PutBitContext *pb, unsigned int value, unsigned int max){ int i, bits; if (!max) return; bits = bits_to_store(max); for (i = 0; i < bits-1; i++) put_bits(pb, 1, value & (1 << i)); if ( (value | (1 << (bits-1))) <= max) put_bits(pb, 1, value & (1 << (bits-1)));}static unsigned int read_uint_max(GetBitContext *gb, int max){ int i, bits, value = 0; if (!max) return 0; bits = bits_to_store(max); for (i = 0; i < bits-1; i++) if (get_bits1(gb)) value += 1 << i; if ( (value | (1<<(bits-1))) <= max) if (get_bits1(gb)) value += 1 << (bits-1); return value;}static int intlist_write(PutBitContext *pb, int *buf, int entries, int base_2_part){ int i, j, x = 0, low_bits = 0, max = 0; int step = 256, pos = 0, dominant = 0, any = 0; int *copy, *bits; copy = av_mallocz(4* entries); if (!copy) return -1; if (base_2_part) { int energy = 0; for (i = 0; i < entries; i++) energy += abs(buf[i]); low_bits = bits_to_store(energy / (entries * 2)); if (low_bits > 15) low_bits = 15; put_bits(pb, 4, low_bits); } for (i = 0; i < entries; i++) { put_bits(pb, low_bits, abs(buf[i])); copy[i] = abs(buf[i]) >> low_bits; if (copy[i] > max) max = abs(copy[i]); } bits = av_mallocz(4* entries*max); if (!bits) {// av_free(copy); return -1; } for (i = 0; i <= max; i++) { for (j = 0; j < entries; j++) if (copy[j] >= i) bits[x++] = copy[j] > i; } // store bitstream while (pos < x) { int steplet = step >> 8; if (pos + steplet > x) steplet = x - pos; for (i = 0; i < steplet; i++) if (bits[i+pos] != dominant) any = 1; put_bits(pb, 1, any); if (!any) { pos += steplet; step += step / ADAPT_LEVEL; } else { int interloper = 0; while (((pos + interloper) < x) && (bits[pos + interloper] == dominant)) interloper++; // note change write_uint_max(pb, interloper, (step >> 8) - 1); pos += interloper + 1; step -= step / ADAPT_LEVEL; } if (step < 256) { step = 65536 / step; dominant = !dominant; } } // store signs for (i = 0; i < entries; i++) if (buf[i]) put_bits(pb, 1, buf[i] < 0);// av_free(bits);// av_free(copy); return 0;}static int intlist_read(GetBitContext *gb, int *buf, int entries, int base_2_part){ int i, low_bits = 0, x = 0; int n_zeros = 0, step = 256, dominant = 0; int pos = 0, level = 0; int *bits = av_mallocz(4* entries); if (!bits) return -1; if (base_2_part) { low_bits = get_bits(gb, 4); if (low_bits) for (i = 0; i < entries; i++) buf[i] = get_bits(gb, low_bits); }// av_log(NULL, AV_LOG_INFO, "entries: %d, low bits: %d\n", entries, low_bits); while (n_zeros < entries) { int steplet = step >> 8; if (!get_bits1(gb)) { for (i = 0; i < steplet; i++) bits[x++] = dominant; if (!dominant) n_zeros += steplet; step += step / ADAPT_LEVEL; } else { int actual_run = read_uint_max(gb, steplet-1); // av_log(NULL, AV_LOG_INFO, "actual run: %d\n", actual_run); for (i = 0; i < actual_run; i++) bits[x++] = dominant; bits[x++] = !dominant; if (!dominant) n_zeros += actual_run; else n_zeros++; step -= step / ADAPT_LEVEL; } if (step < 256) { step = 65536 / step; dominant = !dominant; } } // reconstruct unsigned values n_zeros = 0; for (i = 0; n_zeros < entries; i++) { while(1) { if (pos >= entries) { pos = 0; level += 1 << low_bits; } if (buf[pos] >= level) break; pos++; } if (bits[i]) buf[pos] += 1 << low_bits; else n_zeros++; pos++; }// av_free(bits); // read signs for (i = 0; i < entries; i++) if (buf[i] && get_bits1(gb)) buf[i] = -buf[i];// av_log(NULL, AV_LOG_INFO, "zeros: %d pos: %d\n", n_zeros, pos); return 0;}#endifstatic void predictor_init_state(int *k, int *state, int order){ int i; for (i = order-2; i >= 0; i--) { int j, p, x = state[i]; for (j = 0, p = i+1; p < order; j++,p++) { int tmp = x + shift_down(k[j] * state[p], LATTICE_SHIFT); state[p] += shift_down(k[j]*x, LATTICE_SHIFT); x = tmp; } }}static int predictor_calc_error(int *k, int *state, int order, int error){ int i, x = error - shift_down(k[order-1] * state[order-1], LATTICE_SHIFT);#if 1 int *k_ptr = &(k[order-2]), *state_ptr = &(state[order-2]); for (i = order-2; i >= 0; i--, k_ptr--, state_ptr--) { int k_value = *k_ptr, state_value = *state_ptr; x -= shift_down(k_value * state_value, LATTICE_SHIFT); state_ptr[1] = state_value + shift_down(k_value * x, LATTICE_SHIFT); }#else for (i = order-2; i >= 0; i--) { x -= shift_down(k[i] * state[i], LATTICE_SHIFT); state[i+1] = state[i] + shift_down(k[i] * x, LATTICE_SHIFT); }#endif // don't drift too far, to avoid overflows if (x > (SAMPLE_FACTOR<<16)) x = (SAMPLE_FACTOR<<16); if (x < -(SAMPLE_FACTOR<<16)) x = -(SAMPLE_FACTOR<<16); state[0] = x; return x;}// Heavily modified Levinson-Durbin algorithm which// copes better with quantization, and calculates the// actual whitened result as it goes.static void modified_levinson_durbin(int *window, int window_entries, int *out, int out_entries, int channels, int *tap_quant){ int i; int *state = av_mallocz(4* window_entries); memcpy(state, window, 4* window_entries); for (i = 0; i < out_entries; i++) { int step = (i+1)*channels, k, j; double xx = 0.0, xy = 0.0;#if 1 int *x_ptr = &(window[step]), *state_ptr = &(state[0]); j = window_entries - step; for (;j>=0;j--,x_ptr++,state_ptr++) { double x_value = *x_ptr, state_value = *state_ptr; xx += state_value*state_value; xy += x_value*state_value; }#else for (j = 0; j <= (window_entries - step); j++); { double stepval = window[step+j], stateval = window[j];// xx += (double)window[j]*(double)window[j];// xy += (double)window[step+j]*(double)window[j]; xx += stateval*stateval; xy += stepval*stateval; }#endif if (xx == 0.0) k = 0; else k = (int)(floor(-xy/xx * (double)LATTICE_FACTOR / (double)(tap_quant[i]) + 0.5)); if (k > (LATTICE_FACTOR/tap_quant[i])) k = LATTICE_FACTOR/tap_quant[i]; if (-k > (LATTICE_FACTOR/tap_quant[i])) k = -(LATTICE_FACTOR/tap_quant[i]); out[i] = k; k *= tap_quant[i];#if 1 x_ptr = &(window[step]); state_ptr = &(state[0]); j = window_entries - step; for (;j>=0;j--,x_ptr++,state_ptr++) { int x_value = *x_ptr, state_value = *state_ptr; *x_ptr = x_value + shift_down(k*state_value,LATTICE_SHIFT); *state_ptr = state_value + shift_down(k*x_value, LATTICE_SHIFT); }#else for (j=0; j <= (window_entries - step); j++) { int stepval = window[step+j], stateval=state[j]; window[step+j] += shift_down(k * stateval, LATTICE_SHIFT); state[j] += shift_down(k * stepval, LATTICE_SHIFT); }#endif } av_free(state);}static int samplerate_table[] = { 44100, 22050, 11025, 96000, 48000, 32000, 24000, 16000, 8000 };#ifdef CONFIG_ENCODERSstatic inline int code_samplerate(int samplerate){ switch (samplerate) {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -