📄 alac.c
字号:
/* * ALAC (Apple Lossless Audio Codec) decoder * Copyright (c) 2005 David Hammerton * All rights reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA *//** * @file alac.c * ALAC (Apple Lossless Audio Codec) decoder * @author 2005 David Hammerton * * For more information on the ALAC format, visit: * http://crazney.net/programs/itunes/alac.html * * Note: This decoder expects a 36- (0x24-)byte QuickTime atom to be * passed through the extradata[_size] fields. This atom is tacked onto * the end of an 'alac' stsd atom and has the following format: * bytes 0-3 atom size (0x24), big-endian * bytes 4-7 atom type ('alac', not the 'alac' tag from start of stsd) * bytes 8-35 data bytes needed by decoder */#include "avcodec.h"#include "bitstream.h"#define ALAC_EXTRADATA_SIZE 36typedef struct { AVCodecContext *avctx; GetBitContext gb; /* init to 0; first frame decode should initialize from extradata and * set this to 1 */ int context_initialized; int samplesize; int numchannels; int bytespersample; /* buffers */ int32_t *predicterror_buffer_a; int32_t *predicterror_buffer_b; int32_t *outputsamples_buffer_a; int32_t *outputsamples_buffer_b; /* stuff from setinfo */ uint32_t setinfo_max_samples_per_frame; /* 0x1000 = 4096 */ /* max samples per frame? */ uint8_t setinfo_7a; /* 0x00 */ uint8_t setinfo_sample_size; /* 0x10 */ uint8_t setinfo_rice_historymult; /* 0x28 */ uint8_t setinfo_rice_initialhistory; /* 0x0a */ uint8_t setinfo_rice_kmodifier; /* 0x0e */ uint8_t setinfo_7f; /* 0x02 */ uint16_t setinfo_80; /* 0x00ff */ uint32_t setinfo_82; /* 0x000020e7 */ uint32_t setinfo_86; /* 0x00069fe4 */ uint32_t setinfo_8a_rate; /* 0x0000ac44 */ /* end setinfo stuff */} ALACContext;static void allocate_buffers(ALACContext *alac){ alac->predicterror_buffer_a = av_malloc(alac->setinfo_max_samples_per_frame * 4); alac->predicterror_buffer_b = av_malloc(alac->setinfo_max_samples_per_frame * 4); alac->outputsamples_buffer_a = av_malloc(alac->setinfo_max_samples_per_frame * 4); alac->outputsamples_buffer_b = av_malloc(alac->setinfo_max_samples_per_frame * 4);}void alac_set_info(ALACContext *alac){ unsigned char *ptr = alac->avctx->extradata; ptr += 4; /* size */ ptr += 4; /* alac */ ptr += 4; /* 0 ? */ alac->setinfo_max_samples_per_frame = BE_32(ptr); /* buffer size / 2 ? */ ptr += 4; alac->setinfo_7a = *ptr++; alac->setinfo_sample_size = *ptr++; alac->setinfo_rice_historymult = *ptr++; alac->setinfo_rice_initialhistory = *ptr++; alac->setinfo_rice_kmodifier = *ptr++; alac->setinfo_7f = *ptr++; alac->setinfo_80 = BE_16(ptr); ptr += 2; alac->setinfo_82 = BE_32(ptr); ptr += 4; alac->setinfo_86 = BE_32(ptr); ptr += 4; alac->setinfo_8a_rate = BE_32(ptr); ptr += 4; allocate_buffers(alac);}/* hideously inefficient. could use a bitmask search, * alternatively bsr on x86, */static int count_leading_zeros(int32_t input){ int i = 0; while (!(0x80000000 & input) && i < 32) { i++; input = input << 1; } return i;}void bastardized_rice_decompress(ALACContext *alac, int32_t *output_buffer, int output_size, int readsamplesize, /* arg_10 */ int rice_initialhistory, /* arg424->b */ int rice_kmodifier, /* arg424->d */ int rice_historymult, /* arg424->c */ int rice_kmodifier_mask /* arg424->e */ ){ int output_count; unsigned int history = rice_initialhistory; int sign_modifier = 0; for (output_count = 0; output_count < output_size; output_count++) { int32_t x = 0; int32_t x_modified; int32_t final_val; /* read x - number of 1s before 0 represent the rice */ while (x <= 8 && get_bits1(&alac->gb)) { x++; } if (x > 8) { /* RICE THRESHOLD */ /* use alternative encoding */ int32_t value; value = get_bits(&alac->gb, readsamplesize); /* mask value to readsamplesize size */ if (readsamplesize != 32) value &= (0xffffffff >> (32 - readsamplesize)); x = value; } else { /* standard rice encoding */ int extrabits; int k; /* size of extra bits */ /* read k, that is bits as is */ k = 31 - rice_kmodifier - count_leading_zeros((history >> 9) + 3); if (k < 0) k += rice_kmodifier; else k = rice_kmodifier; if (k != 1) { extrabits = show_bits(&alac->gb, k); /* multiply x by 2^k - 1, as part of their strange algorithm */ x = (x << k) - x; if (extrabits > 1) { x += extrabits - 1; get_bits(&alac->gb, k); } else { get_bits(&alac->gb, k - 1); } } } x_modified = sign_modifier + x; final_val = (x_modified + 1) / 2; if (x_modified & 1) final_val *= -1; output_buffer[output_count] = final_val; sign_modifier = 0; /* now update the history */ history += (x_modified * rice_historymult) - ((history * rice_historymult) >> 9); if (x_modified > 0xffff) history = 0xffff; /* special case: there may be compressed blocks of 0 */ if ((history < 128) && (output_count+1 < output_size)) { int block_size; sign_modifier = 1; x = 0; while (x <= 8 && get_bits1(&alac->gb)) { x++; } if (x > 8) { block_size = get_bits(&alac->gb, 16); block_size &= 0xffff; } else { int k; int extrabits; k = count_leading_zeros(history) + ((history + 16) >> 6 /* / 64 */) - 24; extrabits = show_bits(&alac->gb, k); block_size = (((1 << k) - 1) & rice_kmodifier_mask) * x + extrabits - 1; if (extrabits < 2) { x = 1 - extrabits; block_size += x; get_bits(&alac->gb, k - 1); } else { get_bits(&alac->gb, k); } } if (block_size > 0) { memset(&output_buffer[output_count+1], 0, block_size * 4); output_count += block_size; } if (block_size > 0xffff) sign_modifier = 0; history = 0; } }}#define SIGN_EXTENDED32(val, bits) ((val << (32 - bits)) >> (32 - bits))#define SIGN_ONLY(v) \ ((v < 0) ? (-1) : \ ((v > 0) ? (1) : \ (0)))static void predictor_decompress_fir_adapt(int32_t *error_buffer, int32_t *buffer_out, int output_size, int readsamplesize, int16_t *predictor_coef_table, int predictor_coef_num, int predictor_quantitization){ int i; /* first sample always copies */ *buffer_out = *error_buffer; if (!predictor_coef_num) { if (output_size <= 1) return; memcpy(buffer_out+1, error_buffer+1, (output_size-1) * 4); return; } if (predictor_coef_num == 0x1f) { /* 11111 - max value of predictor_coef_num */ /* second-best case scenario for fir decompression, * error describes a small difference from the previous sample only */ if (output_size <= 1) return; for (i = 0; i < output_size - 1; i++) { int32_t prev_value; int32_t error_value; prev_value = buffer_out[i]; error_value = error_buffer[i+1]; buffer_out[i+1] = SIGN_EXTENDED32((prev_value + error_value), readsamplesize); } return; } /* read warm-up samples */ if (predictor_coef_num > 0) { int i; for (i = 0; i < predictor_coef_num; i++) { int32_t val; val = buffer_out[i] + error_buffer[i+1]; val = SIGN_EXTENDED32(val, readsamplesize); buffer_out[i+1] = val; } }#if 0 /* 4 and 8 are very common cases (the only ones i've seen). these * should be unrolled and optimised */ if (predictor_coef_num == 4) { /* FIXME: optimised general case */ return; } if (predictor_coef_table == 8) { /* FIXME: optimised general case */ return; }#endif /* general case */ if (predictor_coef_num > 0) { for (i = predictor_coef_num + 1; i < output_size; i++) { int j; int sum = 0; int outval; int error_val = error_buffer[i]; for (j = 0; j < predictor_coef_num; j++) { sum += (buffer_out[predictor_coef_num-j] - buffer_out[0]) * predictor_coef_table[j]; } outval = (1 << (predictor_quantitization-1)) + sum; outval = outval >> predictor_quantitization; outval = outval + buffer_out[0] + error_val; outval = SIGN_EXTENDED32(outval, readsamplesize); buffer_out[predictor_coef_num+1] = outval; if (error_val > 0) { int predictor_num = predictor_coef_num - 1; while (predictor_num >= 0 && error_val > 0) { int val = buffer_out[0] - buffer_out[predictor_coef_num - predictor_num]; int sign = SIGN_ONLY(val); predictor_coef_table[predictor_num] -= sign; val *= sign; /* absolute value */ error_val -= ((val >> predictor_quantitization) * (predictor_coef_num - predictor_num)); predictor_num--; } } else if (error_val < 0) { int predictor_num = predictor_coef_num - 1; while (predictor_num >= 0 && error_val < 0) { int val = buffer_out[0] - buffer_out[predictor_coef_num - predictor_num]; int sign = - SIGN_ONLY(val); predictor_coef_table[predictor_num] -= sign; val *= sign; /* neg value */ error_val -= ((val >> predictor_quantitization) * (predictor_coef_num - predictor_num)); predictor_num--; } } buffer_out++; } }}void deinterlace_16(int32_t *buffer_a, int32_t *buffer_b, int16_t *buffer_out, int numchannels, int numsamples, uint8_t interlacing_shift, uint8_t interlacing_leftweight){ int i; if (numsamples <= 0) return; /* weighted interlacing */ if (interlacing_leftweight) { for (i = 0; i < numsamples; i++) { int32_t difference, midright; int16_t left; int16_t right; midright = buffer_a[i]; difference = buffer_b[i]; right = midright - ((difference * interlacing_leftweight) >> interlacing_shift); left = (midright - ((difference * interlacing_leftweight) >> interlacing_shift)) + difference; buffer_out[i*numchannels] = left; buffer_out[i*numchannels + 1] = right; } return; }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -