📄 guotao.m
字号:
%郭涛算法_多父体杂交算法和郭涛算法_精英多父体杂交算法分别20次数值实验,并给出平均时间
function GuoTao()
clear all;
N=50;%初始个体个数
M=8;
n=1;%论域维数,可修改,用循环做
eps=1e-6;%精度
upper=10;lower=-10;%论域范围
drop=upper-lower;
%郭涛算法_多父体杂交算法
minP0=zeros(20,n);minQ0=zeros(20,1);
minFrequency0=zeros(20,1);minTimes0=zeros(20,1);
for i=1:20
[minP0(i,:),minQ0(i),minFrequency0(i),minTimes0(i)]=GT(N,M,n,upper,lower,eps);
end
%对minP、minQ、minFrequency按minQ从小到打排序
tempP=zeros(20,n);tempFrequency=zeros(20,1);
[X,I]=sort(minQ0);
for r=1:20
tempP(r,:)=minP0(I(r),:);
tempFrequency(r)=minFrequency0(I(r));
end
minP0=tempP;minQ0=X;minFrequency0=tempFrequency;
averageTime0=sum(minTimes0)/20;
averageFrequency0=sum(minFrequency0)/20;
%郭涛算法_精英多父体杂交算法
minP1=zeros(20,n);minQ1=zeros(20,1);
minFrequency1=zeros(20,1);minTimes1=zeros(20,1);
for i=1:20
[minP1(i,:),minQ1(i),minFrequency1(i),minTimes1(i)]=GT_GYZJ(N,M,n,upper,lower,eps);
end
%对minP、minQ、minFrequency按minQ从小到打排序
tempP=zeros(20,n);tempFrequency=zeros(20,1);
[X,I]=sort(minQ1);
for r=1:20
tempP(r,:)=minP1(I(r),:);
tempFrequency(r)=minFrequency1(I(r));
end
minP1=tempP;minQ1=X;minFrequency1=tempFrequency;
averageTime1=sum(minTimes1)/20;
averageFrequency1=sum(minFrequency1)/20;
%郭涛算法_多父体杂交算法
function [P_Best,Best,Frequency,Time]=GT(N,M,n,upper,lower,eps)
if nargin<6
disp('输入参数错误');
return;
elseif nargout<4
disp('输出参数错误');
return;
end
drop=upper-lower;%若各个分量上下界不同,可以用数组来代替
P=zeros(N,n);%存放初始N个个体,每个个体有n个基因位
Q=zeros(N,1);%存放P中个体对应函数值
Frequency =0;%当前比较次数
tic
%生成初始群体P
for s=1:n
P(:,s)=drop*rand(N,1)+lower;
end
%生成初始群体P对应的函数值
for r=1:N
Q(r)=f(P(r,:));
end
[Best,BestIndex]=min(Q);[Worst,WorstIndex]=max(Q);
%以下为郭涛算法主体循环部分
A=zeros(1,M);B=zeros(1,M);
while Worst-Best>eps
Frequency=Frequency +1;
%从P中选M个个体生成空间V,其下标存放于A中
A=floor(rand(1,M)*(N-1))+1;
%生成Xson的各个组合系数(待检测)
sum=0;minbound=-0.5;maxbound=1.5;
for r=1:M-1
B(r)=(maxbound-minbound)*rand(1)+minbound;
sum=sum+B(r);
maxbound=min(1.5,1.5-sum);
minbound=max(-0.5,-0.5-sum);
end
B(M)=1-sum;
%生成Xson
Xson=zeros(1,n);
for r=1:M
Xson=Xson+B(r)*P(A(r),:);
end
%越界处理
for s=1:n
if Xson(s)<lower
Xson(s)=lower;
elseif Xson(s)>upper
Xson(s)=upper;
end
end
y=f(Xson);
if y<Worst
P(WorstIndex,:)=Xson;Q(WorstIndex)=y;
[Best,BestIndex]=min(Q);
[Worst,WorstIndex]=max(Q);
end
end
P_Best=P(BestIndex,:);Time=toc;
%郭涛算法_精英多父体杂交算法
function [P_Best,Best,Frequency,Time]=GT_GYZJ(N,M,n,upper,lower,eps)
if nargin<6
disp('输入参数错误');
return;
elseif nargout<4
disp('输出参数错误');
return;
end
drop=upper-lower;%若各个分量上下界不同,可以用数组来代替
P=zeros(N,n);%存放初始N个个体,每个个体有n个基因位
Q=zeros(N,1);%存放P中个体对应函数值
Frequency =0;%当前比较次数
tic
%生成初始群体P
for s=1:n
P(:,s)=drop*rand(N,1)+lower;
end
%生成初始群体P对应的函数值
for r=1:N
Q(r)=f(P(r,:));
end
[Best,BestIndex]=min(Q);[Worst,WorstIndex]=max(Q);
%以下为郭涛算法主体循环部分
A=zeros(1,M);B=zeros(1,M);
while Worst-Best>eps
Frequency=Frequency +1;
[m,A(1)]=min(Q);
%从P中选M-1个个体生成空间V,其下标存放于A中
A(2:end)=floor(rand(1,M-1)*(N-1))+1;
%生成Xson的各个组合系数(待检测)
sum=0;minbound=-0.5;maxbound=1.5;
for r=1:M-1
B(r)=(maxbound-minbound)*rand(1)+minbound;
sum=sum+B(r);
maxbound=min(1.5,1.5-sum);
minbound=max(-0.5,-0.5-sum);
end
B(M)=1-sum;
%生成Xson
Xson=zeros(1,n);
for r=1:M
Xson=Xson+B(r)*P(A(r),:);
end
%越界处理
for s=1:n
if Xson(s)<lower
Xson(s)=lower;
elseif Xson(s)>upper
Xson(s)=upper;
end
end
y=f(Xson);
if y<Worst
P(WorstIndex,:)=Xson;Q(WorstIndex)=y;
[Best,BestIndex]=min(Q);
[Worst,WorstIndex]=max(Q);
end
end
P_Best=P(BestIndex,:)
Time=toc
%函数f(x)
function y=f(x)
n=length(x);
y=1;
for i=1:n
s=0;
for j=1:5
s=s+j*cos((j+1)*x(i)+j);
end
y=y*s;
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -