⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ica.rd

📁 支持向量机完整版(SVM)可以用来进行设别训练
💻 RD
字号:
\name{ica}\alias{ica}\alias{plot.ica}\alias{print.ica}\title{Independent Component Analysis}\usage{ica(X, lrate, epochs=100, ncomp=dim(X)[2], fun="negative")}\arguments{ \item{X}{The matrix for which the ICA is to be computed} \item{lrate}{learning rate} \item{epochs}{number of iterations} \item{ncomp}{number of independent components} \item{fun}{function used for the nonlinear computation part}}\description{This is an R-implementation of the Matlab-Function ofPetteri.Pajunen@hut.fi.For a data matrix X independent components are extracted by applying anonlinear PCA algorithm. The parameter \code{fun} determines whichnonlinearity is used. \code{fun} can either be a function or one of thefollowing strings "negative kurtosis", "positive kurtosis", "4thmoment" which can be abbreviated to uniqueness. If \code{fun} equals"negative (positive) kurtosis" the function tanh (x-tanh(x)) is usedwhich provides ICA for sources with negative (positive) kurtosis. For\code{fun == "4th moments"} the signed square function is used.}\value{  An object of class \code{"ica"} which is a list with components  \item{weights}{ICA weight matrix}  \item{projection}{Projected data}  \item{epochs}{Number of iterations}  \item{fun}{Name of the used function}  \item{lrate}{Learning rate used}  \item{initweights}{Initial weight matrix}}\references{  Oja et al., ``Learning in Nonlinear Constrained Hebbian Networks'', in  Proc. ICANN-91, pp. 385--390.  Karhunen and Joutsensalo, ``Generalizations of Principal Component  Analysis, Optimization Problems, and Neural Networks'', Neural Networks,  v. 8, no. 4, pp. 549--562, 1995.}\note{Currently, there is no reconstruction from the ICA subspace to the  original input space.}\author{Andreas Weingessel}\keyword{multivariate}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -