📄 scaclust.rd
字号:
\name{scaclust}\alias{scaclust}\title{Fuzzy Clustering using Scatter Matrices}\usage{scaclust(x, centers, iter.max=100, verbose=FALSE, method="ad", theta = NULL)}\arguments{ \item{x}{The data matrix, where the columns correspond to the variables and the rows to the observations.} \item{centers}{Number of clusters or initial values for cluster centers} \item{iter.max}{Maximum number of iterations} \item{verbose}{If \code{TRUE}, make some output during learning} \item{method}{If \code{"ad"}, then we have the Adaptive distances method, if \code{"mtv"} the Minimum total volume method, if \code{"sand"} the Sum of all normalized determinants method and if \code{"mlm"} the Maximum likelihood method (Product of Determinants). Abbreviations of the method names are also accepted.} \item{theta}{A set of constraints for each cluster}}\description{ Four fuzzy clustering methods, namely the Adaptive distances method, the Minimum total volume method, the Sum of all normalized determinants and the the Maximum likelihood method (Product of Determinants) that are based on the calculation of the scatter matrices.} \details{ The data given by \code{x} is clustered by 4 fuzzy algorithms based on the scatter matrices computation. If \code{centers} is a matrix, its rows are taken as the initial cluster centers. If \code{centers} is an integer, \code{centers} rows of \code{x} are randomly chosen as initial values. The algorithm stops when the maximum number of iterations (given by \code{iter.max}) is reached. If \code{verbose} is \code{TRUE}, it displays for each iteration the number the value of the objective function. If \code{method} is \code{"ad"}, then we have the Adaptive distances method, if \code{"mtv"} the Minimum total volume method, if \code{"sand"} the Sum of all normalized determinants method and if \code{"mlm"} the Maximum likelihood method (Product of Determinants). Note that all these algorithms are adapted for a fuzzification parameter of a value \emph{2}. \code{theta} is by default \emph{1.0} for every cluster. The relative volumes of the clusters are constrained a priori by these constants. An inappropriate choice can lead to a bad clustering. The Maximum likelihood method does not need this parameter.}\value{ \code{scaclust} returns an object of class \code{"fclust"}. \item{centers}{The final cluster centers.} \item{size}{The number of data points in each cluster.} \item{cluster}{Vector containing the indices of the clusters where the data points are assigned to. The maximum membership value of a point is considered for partitioning it to a cluster.} \item{iter}{The number of iterations performed.} \item{membership}{a matrix with the membership values of the data points to the clusters.} \item{withinerror}{Returns the value of the error function.} \item{call}{Returns a call in which all of the arguments are specified by their names.} }\author{Evgenia Dimitriadou}\references{ P. J. Rousseeuw, L. Kaufman, and E. Trauwaert. \emph{Fuzzy Clustering using Scatter Matrices. Computational Statistics & Data Analysis}, vol.\bold{23}, p.135-151, 1996.}\examples{## a 2-dimensional examplex<-rbind(matrix(rnorm(100,sd=0.3),ncol=2), matrix(rnorm(100,mean=1,sd=0.3),ncol=2))cl<-scaclust(x,2,20,verbose=TRUE,method="ad")print(cl)}\keyword{cluster}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -