⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 scaclust.rd

📁 支持向量机完整版(SVM)可以用来进行设别训练
💻 RD
字号:
\name{scaclust}\alias{scaclust}\title{Fuzzy Clustering using Scatter Matrices}\usage{scaclust(x, centers, iter.max=100, verbose=FALSE, method="ad",         theta = NULL)}\arguments{  \item{x}{The data matrix, where the columns correspond to the    variables and the rows to the observations.}  \item{centers}{Number of clusters or initial values for cluster centers}  \item{iter.max}{Maximum number of iterations}  \item{verbose}{If \code{TRUE}, make some output during learning}  \item{method}{If \code{"ad"}, then we have the Adaptive distances method, if    \code{"mtv"} the Minimum total volume method, if \code{"sand"} the    Sum of all normalized determinants method and if \code{"mlm"} the    Maximum likelihood method (Product of Determinants). Abbreviations    of the method names are also accepted.}  \item{theta}{A set of constraints for each cluster}}\description{  Four fuzzy clustering methods, namely the Adaptive distances method,  the Minimum total volume method, the Sum of all normalized  determinants and the the Maximum likelihood method (Product of  Determinants) that are based on the calculation of the scatter  matrices.}    \details{    The data given by \code{x} is clustered by 4 fuzzy algorithms based on  the scatter matrices computation.    If \code{centers} is a matrix, its rows are taken as the initial cluster  centers. If \code{centers} is an integer, \code{centers} rows  of \code{x} are randomly chosen as initial values.    The algorithm stops when the maximum number of iterations (given by  \code{iter.max}) is reached.  If \code{verbose} is \code{TRUE}, it displays for each iteration the number  the value of the objective function.  If \code{method} is \code{"ad"}, then we have the Adaptive distances  method, if \code{"mtv"} the Minimum total volume method, if  \code{"sand"} the Sum of all normalized determinants method and if  \code{"mlm"} the Maximum likelihood method (Product of  Determinants). Note that all these algorithms are adapted for a  fuzzification parameter of a value \emph{2}.  \code{theta} is by default \emph{1.0} for every cluster. The relative volumes  of the clusters are constrained a priori by these constants. An  inappropriate choice can lead to a bad clustering. The Maximum  likelihood method does not need this parameter.}\value{  \code{scaclust} returns an object of class \code{"fclust"}.  \item{centers}{The final cluster centers.}  \item{size}{The number of data points in each cluster.}  \item{cluster}{Vector containing the indices of the clusters where    the data points are assigned to. The maximum membership value of a    point is considered for partitioning it to a cluster.}  \item{iter}{The number of iterations performed.}  \item{membership}{a matrix with the membership values of the data points    to the clusters.}  \item{withinerror}{Returns the value of the error function.}  \item{call}{Returns a call in which all of the arguments are    specified by their names.}  }\author{Evgenia Dimitriadou}\references{  P. J. Rousseeuw, L. Kaufman, and E. Trauwaert. \emph{Fuzzy Clustering using    Scatter Matrices. Computational Statistics & Data Analysis}, vol.\bold{23},  p.135-151, 1996.}\examples{## a 2-dimensional examplex<-rbind(matrix(rnorm(100,sd=0.3),ncol=2),         matrix(rnorm(100,mean=1,sd=0.3),ncol=2))cl<-scaclust(x,2,20,verbose=TRUE,method="ad")print(cl)}\keyword{cluster}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -