⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bclust.rd

📁 支持向量机完整版(SVM)可以用来进行设别训练
💻 RD
字号:
\name{bclust}\alias{bclust}\alias{hclust.bclust}\alias{plot.bclust}\alias{centers.bclust}\alias{clusters.bclust}\title{Bagged Clustering}\usage{bclust(x, centers=2, iter.base=10, minsize=0,       dist.method="euclidian",       hclust.method="average", base.method="kmeans",       base.centers=20, verbose=TRUE,       final.kmeans=FALSE, docmdscale=FALSE,       resample=TRUE, weights=NULL, maxcluster=base.centers, ...)hclust.bclust(object, x, centers, dist.method=object$dist.method,              hclust.method=object$hclust.method, final.kmeans=FALSE,              docmdscale = FALSE, maxcluster=object$maxcluster)\method{plot}{bclust}(x, maxcluster=object$maxcluster, main, ...)centers.bclust(object, k)clusters.bclust(object, k, x=NULL)}\arguments{  \item{x}{Matrix of inputs (or object of class \code{"bclust"} for plot).}  \item{centers, k}{Number of clusters.}  \item{iter.base}{Number of runs of the base cluster algorithm.}  \item{minsize}{Minimum number of points in a base cluster.}  \item{dist.method}{Distance method used for the hierarchical    clustering, see \code{\link{dist}} for available distances.}  \item{hclust.method}{Linkage method used for the hierarchical    clustering, see \code{\link{hclust}} for available methods.}  \item{base.method}{Partitioning cluster method used as base algorithm.}  \item{base.centers}{Number of centers used in each repetition of the    base method.}  \item{verbose}{Output status messages.}  \item{final.kmeans}{If \code{TRUE}, a final kmeans step is performed    using the output of the bagged clustering as initialization.}  \item{docmdscale}{Logical, if \code{TRUE} a \code{\link{cmdscale}}    result is included in the return value.}  \item{resample}{Logical, if \code{TRUE} the base method is run on    bootstrap samples of \code{x}, else directly on \code{x}.}  \item{weights}{Vector of length \code{nrow(x)}, weights for the    resampling. By default all observations have equal weight.}  \item{maxcluster}{Maximum number of clusters memberships are to be    computed for.}  \item{object}{Object of class \code{"bclust"}.}  \item{main}{Main title of the plot.}  \item{\dots}{Optional arguments top be passed to the base method    in \code{bclust}, ignored in \code{plot}.}}\description{    Cluster the data in \code{x} using the bagged clustering    algorithm. A partitioning cluster algorithm such as    \code{\link{kmeans}} is run repeatedly on bootstrap samples from the    original data. The resulting cluster centers are then combined using    the hierarchical cluster algorithm \code{\link{hclust}}.}\details{    First, \code{iter.base} bootstrap samples of the original data in    \code{x} are created by drawing with replacement. The base cluster    method is run on each of these samples with \code{base.centers}    centers. The \code{base.method} must be the name of a partitioning    cluster function returning a list with the same components as the    return value of \code{\link{kmeans}}.    This results in a collection of \code{iter.base *	base.centers} centers, which are subsequently clustered using    the hierarchical method \code{\link{hclust}}. Base centers with less    than \code{minsize} points in there respective partitions are removed    before the hierarchical clustering.    The resulting dendrogram is then cut to produce \code{centers}    clusters. Hence, the name of the argument \code{centers} is a little    bit misleading as the resulting clusters need not be convex, e.g.,    when single linkage is used. The name was chosen for compatibility     with standard partitioning cluster methods such as    \code{\link{kmeans}}.    A new hierarchical clustering (e.g., using another    \code{hclust.method}) re-using previous base runs can be    performed by running \code{hclust.bclust} on the return value of    \code{bclust}. }\value{    \code{bclust} and \code{hclust.bclust} return objects of class    \code{"bclust"} including the components     \item{hclust}{Return value of the hierarchical clustering of the	collection of base centers (Object of class \code{"hclust"}).}    \item{cluster}{Vector with indices of the clusters the inputs are	assigned to.}    \item{centers}{Matrix of centers of the final clusters. Only useful,	if the hierarchical clustering method produces convex clusters.}    \item{allcenters}{Matrix of all \code{iter.base * base.centers}	centers found in the base runs.}}\author{Friedrich Leisch}\references{  Friedrich Leisch. Bagged clustering. Working Paper 51, SFB ``Adaptive  Information Systems and Modeling in Economics and Management  Science'', August 1999. \url{http://www.ci.tuwien.ac.at/~leisch}}\seealso{\code{\link{hclust}}, \code{\link{kmeans}},  \code{\link{boxplot.bclust}}}\keyword{multivariate}\keyword{cluster}\examples{data(iris)bc1 <- bclust(iris[,1:4], 3, base.centers=5)plot(bc1)table(clusters.bclust(bc1, 3))centers.bclust(bc1, 3)}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -