⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 predict.svm.rd

📁 支持向量机完整版(SVM)可以用来进行设别训练
💻 RD
字号:
\name{predict.svm}\alias{predict.svm}\title{Predict method for Support Vector Machines}\description{  This function predicts values based upon a model trained by \code{svm}.}\usage{\method{predict}{svm}(object, newdata, ...)}\arguments{  \item{object}{object of class \code{"svm"}, created by \code{svm}.}  \item{newdata}{a matrix containing the new input data.}  \item{\dots}{currently not used.}}\value{  The predicted value (for classification: the label, for density  estimation: \code{TRUE} or \code{FALSE}).}\references{  \itemize{    \item      Chang, Chih-Chung and Lin, Chih-Jen:\cr      \emph{LIBSVM 2.0: Solving Different Support Vector Formulations.}\cr      \url{http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm2.ps.gz}        \item       Chang, Chih-Chung and Lin, Chih-Jen:\cr      \emph{Libsvm: Introduction and Benchmarks}\cr      \url{http://www.csie.ntu.edu.tw/~cjlin/papers/q2.ps.gz}      }}\author{  David Meyer (based on C++-code by Chih-Chung Chang and Chih-Jen Lin)\cr  \email{david.meyer@ci.tuwien.ac.at}}\seealso{  \code{\link{svm}}}\examples{data(iris)attach(iris)## classification mode# default with factor response:model <- svm (Species~., data=iris)# alternatively the traditional interface:x <- subset (iris, select = -Species)y <- Speciesmodel <- svm (x, y) print (model)summary (model)# test with train datapred <- predict (model, x)# Check accuracy:table (pred,y)## try regression mode on two dimensions# create datax <- seq (0.1,5,by=0.05)y <- log(x) + rnorm (x, sd=0.2)# estimate model and predict input valuesm   <- svm (x,y)new <- predict (m,x)# visualizeplot   (x,y)points (x, log(x), col=2)points (x, new, col=4)## density-estimation# create 2-dim. normal with rho=0:X <- data.frame (a=rnorm (1000), b=rnorm (1000))attach (X)# traditional way:m <- svm (X)# formula interface:m <- svm (~a+b)# or:m <- svm (~., data=X)# visualization:plot (X)points (X[m$index,], col=2)}\keyword{neural}\keyword{nonlinear}\keyword{classif}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -