📄 predict.svm.rd
字号:
\name{predict.svm}\alias{predict.svm}\title{Predict method for Support Vector Machines}\description{ This function predicts values based upon a model trained by \code{svm}.}\usage{\method{predict}{svm}(object, newdata, ...)}\arguments{ \item{object}{object of class \code{"svm"}, created by \code{svm}.} \item{newdata}{a matrix containing the new input data.} \item{\dots}{currently not used.}}\value{ The predicted value (for classification: the label, for density estimation: \code{TRUE} or \code{FALSE}).}\references{ \itemize{ \item Chang, Chih-Chung and Lin, Chih-Jen:\cr \emph{LIBSVM 2.0: Solving Different Support Vector Formulations.}\cr \url{http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm2.ps.gz} \item Chang, Chih-Chung and Lin, Chih-Jen:\cr \emph{Libsvm: Introduction and Benchmarks}\cr \url{http://www.csie.ntu.edu.tw/~cjlin/papers/q2.ps.gz} }}\author{ David Meyer (based on C++-code by Chih-Chung Chang and Chih-Jen Lin)\cr \email{david.meyer@ci.tuwien.ac.at}}\seealso{ \code{\link{svm}}}\examples{data(iris)attach(iris)## classification mode# default with factor response:model <- svm (Species~., data=iris)# alternatively the traditional interface:x <- subset (iris, select = -Species)y <- Speciesmodel <- svm (x, y) print (model)summary (model)# test with train datapred <- predict (model, x)# Check accuracy:table (pred,y)## try regression mode on two dimensions# create datax <- seq (0.1,5,by=0.05)y <- log(x) + rnorm (x, sd=0.2)# estimate model and predict input valuesm <- svm (x,y)new <- predict (m,x)# visualizeplot (x,y)points (x, log(x), col=2)points (x, new, col=4)## density-estimation# create 2-dim. normal with rho=0:X <- data.frame (a=rnorm (1000), b=rnorm (1000))attach (X)# traditional way:m <- svm (X)# formula interface:m <- svm (~a+b)# or:m <- svm (~., data=X)# visualization:plot (X)points (X[m$index,], col=2)}\keyword{neural}\keyword{nonlinear}\keyword{classif}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -