⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 input-algo-modal-analysis

📁 有限元计算程序
💻
字号:
/* [a] : Parameters for Modal Analysis and embedded Newmark Integration */   no_eigen = 2;   dt       = 0.03 sec;   nsteps   = 200;   beta     = 0.25;   gamma    = 0.50;/* [b] : Form Mass and stiffness matrices */   mass = ColumnUnits( 1500*[ 1, 0, 0, 0;                              0, 2, 0, 0;                              0, 0, 2, 0;                              0, 0, 0, 3], [kg] );   stiff = ColumnUnits( 800*[ 1, -1,  0,  0;                             -1,  3, -2,  0;                              0, -2,  5, -3;                              0,  0, -3,  7], [kN/m] );   PrintMatrix(mass, stiff);/* [c] : First two eigenvalues, periods, and eigenvectors */   eigen       = Eigen(stiff, mass, [no_eigen]);   eigenvalue  = Eigenvalue(eigen);   eigenvector = Eigenvector(eigen);   for(i = 1; i <= no_eigen; i = i + 1) {       print "Mode", i ," : w^2 = ", eigenvalue[i][1];       print " : T = ", 2*PI/sqrt(eigenvalue[i][1]) ,"\n";   }   PrintMatrix(eigenvector);/* [d] : Generalized mass and stiffness matrices */   EigenTrans = Trans(eigenvector);   Mstar   = EigenTrans*mass*eigenvector;   Kstar   = EigenTrans*stiff*eigenvector;   PrintMatrix( Mstar );   PrintMatrix( Kstar );/*  * [e] : Generate and print external saw-tooth external loading matrix. First and *       second columns contain time (sec), and external force (kN), respectively. */    myload = ColumnUnits( Matrix([21,2]), [sec], [1]);   myload = ColumnUnits( myload,          [kN], [2]);   for(i = 1; i <= 6; i = i + 1) {       myload[i][1] = (i-1)*dt;       myload[i][2] = (2*i-2)*(1 kN);   }   for(i = 7; i <= 16; i = i + 1) {       myload[i][1] = (i-1)*dt;       myload[i][2] = (22-2*i)*(1 kN);   }   for(i = 17; i <= 21; i = i + 1) {       myload[i][1] = (i-1)*dt;       myload[i][2] = (2*i-42)*(1 kN);   }   PrintMatrix(myload);/* [f] : Initialize system displacement, velocity, and load vectors */   displ  = ColumnUnits( Matrix([4,1]), [m]    );   vel    = ColumnUnits( Matrix([4,1]), [m/sec]);   eload  = ColumnUnits( Matrix([4,1]), [kN]);/* [g] : Initialize modal displacement, velocity, and acc'n vectors */   Mdispl  = ColumnUnits( Matrix([ no_eigen,1 ]), [m]    );   Mvel    = ColumnUnits( Matrix([ no_eigen,1 ]), [m/sec]);   Maccel  = ColumnUnits( Matrix([ no_eigen,1 ]), [m/sec/sec]);/*  * [g] : Allocate Matrix to store five response parameters -- *       Col 1 = time (sec); *       Col 2 = 1st mode displacement (cm); *       Col 3 = 2nd mode displacement (cm); *       Col 4 = 1st + 2nd mode displacement (cm); *       Col 5 = Total energy (Joules) */    response = ColumnUnits( Matrix([nsteps+1,5]), [sec], [1]);   response = ColumnUnits( response,  [cm], [2]);   response = ColumnUnits( response,  [cm], [3]);   response = ColumnUnits( response,  [cm], [4]);   response = ColumnUnits( response, [Jou], [5]);/* [h] : Compute (and compute LU decomposition) effective mass */   MASS  = Mstar + Kstar*beta*dt*dt;   lu    = Decompose(MASS);/* [i] : Mode-Displacement Solution for Response of Undamped MDOF System  */   for(i = 1; i <= nsteps; i = i + 1) {    /* [i.1] : Update external load */       if((i+1) <= 21) then {          eload[1][1] = myload[i+1][2];       } else {          eload[1][1] = 0.0 kN;       }        Pstar = EigenTrans*eload;       R = Pstar - Kstar*(Mdispl + Mvel*dt + Maccel*(dt*dt/2.0)*(1-2*beta));    /* [i.2] : Compute new acceleration, velocity and displacement  */       Maccel_new = Substitution(lu,R);        Mvel_new   = Mvel   + dt*(Maccel*(1.0-gamma) + gamma*Maccel_new);       Mdispl_new = Mdispl + dt*Mvel + ((1 - 2*beta)*Maccel + 2*beta*Maccel_new)*dt*dt/2;    /* [i.3] : Update and print new response */       Maccel = Maccel_new;       Mvel   = Mvel_new;       Mdispl = Mdispl_new;    /* [i.4] : Combine Modes */       displ = eigenvector*Mdispl;       vel   = eigenvector*Mvel;    /* [i.5] : Compute Total System Energy */       e1 = Trans(vel)*mass*vel;       e2 = Trans(displ)*stiff*displ;       energy = 0.5*(e1 + e2);    /* [i.6] : Save components of time-history response */       response[i+1][1] = i*dt;                            /* Time                  */       response[i+1][2] = eigenvector[1][1]*Mdispl[1][1];  /* 1st mode displacement */       response[i+1][3] = eigenvector[1][2]*Mdispl[2][1];  /* 2nd mode displacement */       response[i+1][4] = displ[1][1];               /* 1st + 2nd mode displacement */       response[i+1][5] = energy[1][1];                    /* System Energy         */   }/* [j] : Print response matrix and quit */   PrintMatrix(response);   quit;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -