📄 aout64.h
字号:
/* `a.out' object-file definitions, including extensions to 64-bit fields
Copyright 2001 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#ifndef __A_OUT_64_H__
#define __A_OUT_64_H__
/* This is the layout on disk of the 32-bit or 64-bit exec header. */
#ifndef external_exec
struct external_exec
{
bfd_byte e_info[4]; /* magic number and stuff */
bfd_byte e_text[BYTES_IN_WORD]; /* length of text section in bytes */
bfd_byte e_data[BYTES_IN_WORD]; /* length of data section in bytes */
bfd_byte e_bss[BYTES_IN_WORD]; /* length of bss area in bytes */
bfd_byte e_syms[BYTES_IN_WORD]; /* length of symbol table in bytes */
bfd_byte e_entry[BYTES_IN_WORD]; /* start address */
bfd_byte e_trsize[BYTES_IN_WORD]; /* length of text relocation info */
bfd_byte e_drsize[BYTES_IN_WORD]; /* length of data relocation info */
};
#define EXEC_BYTES_SIZE (4 + BYTES_IN_WORD * 7)
/* Magic numbers for a.out files */
#if ARCH_SIZE==64
#define OMAGIC 0x1001 /* Code indicating object file */
#define ZMAGIC 0x1002 /* Code indicating demand-paged executable. */
#define NMAGIC 0x1003 /* Code indicating pure executable. */
/* There is no 64-bit QMAGIC as far as I know. */
#define N_BADMAG(x) (N_MAGIC(x) != OMAGIC \
&& N_MAGIC(x) != NMAGIC \
&& N_MAGIC(x) != ZMAGIC)
#else
#define OMAGIC 0407 /* ...object file or impure executable. */
#define NMAGIC 0410 /* Code indicating pure executable. */
#define ZMAGIC 0413 /* Code indicating demand-paged executable. */
#define BMAGIC 0415 /* Used by a b.out object. */
/* This indicates a demand-paged executable with the header in the text.
It is used by 386BSD (and variants) and Linux, at least. */
#ifndef QMAGIC
#define QMAGIC 0314
#endif
# ifndef N_BADMAG
# define N_BADMAG(x) (N_MAGIC(x) != OMAGIC \
&& N_MAGIC(x) != NMAGIC \
&& N_MAGIC(x) != ZMAGIC \
&& N_MAGIC(x) != QMAGIC)
# endif /* N_BADMAG */
#endif
#endif
#ifdef QMAGIC
#define N_IS_QMAGIC(x) (N_MAGIC (x) == QMAGIC)
#else
#define N_IS_QMAGIC(x) (0)
#endif
/* The difference between TARGET_PAGE_SIZE and N_SEGSIZE is that TARGET_PAGE_SIZE is
the finest granularity at which you can page something, thus it
controls the padding (if any) before the text segment of a ZMAGIC
file. N_SEGSIZE is the resolution at which things can be marked as
read-only versus read/write, so it controls the padding between the
text segment and the data segment (in memory; on disk the padding
between them is TARGET_PAGE_SIZE). TARGET_PAGE_SIZE and N_SEGSIZE are the same
for most machines, but different for sun3. */
/* By default, segment size is constant. But some machines override this
to be a function of the a.out header (e.g. machine type). */
#ifndef N_SEGSIZE
#define N_SEGSIZE(x) SEGMENT_SIZE
#endif
/* Virtual memory address of the text section.
This is getting very complicated. A good reason to discard a.out format
for something that specifies these fields explicitly. But til then...
* OMAGIC and NMAGIC files:
(object files: text for "relocatable addr 0" right after the header)
start at 0, offset is EXEC_BYTES_SIZE, size as stated.
* The text address, offset, and size of ZMAGIC files depend
on the entry point of the file:
* entry point below TEXT_START_ADDR:
(hack for SunOS shared libraries)
start at 0, offset is 0, size as stated.
* If N_HEADER_IN_TEXT(x) is true (which defaults to being the
case when the entry point is EXEC_BYTES_SIZE or further into a page):
no padding is needed; text can start after exec header. Sun
considers the text segment of such files to include the exec header;
for BFD's purposes, we don't, which makes more work for us.
start at TEXT_START_ADDR + EXEC_BYTES_SIZE, offset is EXEC_BYTES_SIZE,
size as stated minus EXEC_BYTES_SIZE.
* If N_HEADER_IN_TEXT(x) is false (which defaults to being the case when
the entry point is less than EXEC_BYTES_SIZE into a page (e.g. page
aligned)): (padding is needed so that text can start at a page boundary)
start at TEXT_START_ADDR, offset TARGET_PAGE_SIZE, size as stated.
Specific configurations may want to hardwire N_HEADER_IN_TEXT,
for efficiency or to allow people to play games with the entry point.
In that case, you would #define N_HEADER_IN_TEXT(x) as 1 for sunos,
and as 0 for most other hosts (Sony News, Vax Ultrix, etc).
(Do this in the appropriate bfd target file.)
(The default is a heuristic that will break if people try changing
the entry point, perhaps with the ld -e flag.)
* QMAGIC is always like a ZMAGIC for which N_HEADER_IN_TEXT is true,
and for which the starting address is TARGET_PAGE_SIZE (or should this be
SEGMENT_SIZE?) (TEXT_START_ADDR only applies to ZMAGIC, not to QMAGIC).
*/
/* This macro is only relevant for ZMAGIC files; QMAGIC always has the header
in the text. */
#ifndef N_HEADER_IN_TEXT
#define N_HEADER_IN_TEXT(x) (((x).a_entry & (TARGET_PAGE_SIZE-1)) >= EXEC_BYTES_SIZE)
#endif
/* Sun shared libraries, not linux. This macro is only relevant for ZMAGIC
files. */
#ifndef N_SHARED_LIB
#if defined (TEXT_START_ADDR) && TEXT_START_ADDR == 0
#define N_SHARED_LIB(x) (0)
#else
#define N_SHARED_LIB(x) ((x).a_entry < TEXT_START_ADDR)
#endif
#endif
/* Returning 0 not TEXT_START_ADDR for OMAGIC and NMAGIC is based on
the assumption that we are dealing with a .o file, not an
executable. This is necessary for OMAGIC (but means we don't work
right on the output from ld -N); more questionable for NMAGIC. */
#ifndef N_TXTADDR
#define N_TXTADDR(x) \
(/* The address of a QMAGIC file is always one page in, */ \
/* with the header in the text. */ \
N_IS_QMAGIC (x) ? TARGET_PAGE_SIZE + EXEC_BYTES_SIZE : \
N_MAGIC(x) != ZMAGIC ? 0 : /* object file or NMAGIC */\
N_SHARED_LIB(x) ? 0 : \
N_HEADER_IN_TEXT(x) ? \
TEXT_START_ADDR + EXEC_BYTES_SIZE : /* no padding */\
TEXT_START_ADDR /* a page of padding */\
)
#endif
/* If N_HEADER_IN_TEXT is not true for ZMAGIC, there is some padding
to make the text segment start at a certain boundary. For most
systems, this boundary is TARGET_PAGE_SIZE. But for Linux, in the
time-honored tradition of crazy ZMAGIC hacks, it is 1024 which is
not what TARGET_PAGE_SIZE needs to be for QMAGIC. */
#ifndef ZMAGIC_DISK_BLOCK_SIZE
#define ZMAGIC_DISK_BLOCK_SIZE TARGET_PAGE_SIZE
#endif
#define N_DISK_BLOCK_SIZE(x) \
(N_MAGIC(x) == ZMAGIC ? ZMAGIC_DISK_BLOCK_SIZE : TARGET_PAGE_SIZE)
/* Offset in an a.out of the start of the text section. */
#ifndef N_TXTOFF
#define N_TXTOFF(x) \
(/* For {O,N,Q}MAGIC, no padding. */ \
N_MAGIC(x) != ZMAGIC ? EXEC_BYTES_SIZE : \
N_SHARED_LIB(x) ? 0 : \
N_HEADER_IN_TEXT(x) ? \
EXEC_BYTES_SIZE : /* no padding */\
ZMAGIC_DISK_BLOCK_SIZE /* a page of padding */\
)
#endif
/* Size of the text section. It's always as stated, except that we
offset it to `undo' the adjustment to N_TXTADDR and N_TXTOFF
for ZMAGIC files that nominally include the exec header
as part of the first page of text. (BFD doesn't consider the
exec header to be part of the text segment.) */
#ifndef N_TXTSIZE
#define N_TXTSIZE(x) \
(/* For QMAGIC, we don't consider the header part of the text section. */\
N_IS_QMAGIC (x) ? (x).a_text - EXEC_BYTES_SIZE : \
(N_MAGIC(x) != ZMAGIC || N_SHARED_LIB(x)) ? (x).a_text : \
N_HEADER_IN_TEXT(x) ? \
(x).a_text - EXEC_BYTES_SIZE: /* no padding */\
(x).a_text /* a page of padding */\
)
#endif
/* The address of the data segment in virtual memory.
It is the text segment address, plus text segment size, rounded
up to a N_SEGSIZE boundary for pure or pageable files. */
#ifndef N_DATADDR
#define N_DATADDR(x) \
(N_MAGIC(x)==OMAGIC? (N_TXTADDR(x)+N_TXTSIZE(x)) \
: (N_SEGSIZE(x) + ((N_TXTADDR(x)+N_TXTSIZE(x)-1) & ~(N_SEGSIZE(x)-1))))
#endif
/* The address of the BSS segment -- immediately after the data segment. */
#define N_BSSADDR(x) (N_DATADDR(x) + (x).a_data)
/* Offsets of the various portions of the file after the text segment. */
/* For {Q,Z}MAGIC, there is padding to make the data segment start on
a page boundary. Most of the time the a_text field (and thus
N_TXTSIZE) already contains this padding. It is possible that for
BSDI and/or 386BSD it sometimes doesn't contain the padding, and
perhaps we should be adding it here. But this seems kind of
questionable and probably should be BSDI/386BSD-specific if we do
do it.
For NMAGIC (at least for hp300 BSD, probably others), there is
padding in memory only, not on disk, so we must *not* ever pad here
for NMAGIC. */
#ifndef N_DATOFF
#define N_DATOFF(x) \
(N_TXTOFF(x) + N_TXTSIZE(x))
#endif
#ifndef N_TRELOFF
#define N_TRELOFF(x) ( N_DATOFF(x) + (x).a_data )
#endif
#ifndef N_DRELOFF
#define N_DRELOFF(x) ( N_TRELOFF(x) + (x).a_trsize )
#endif
#ifndef N_SYMOFF
#define N_SYMOFF(x) ( N_DRELOFF(x) + (x).a_drsize )
#endif
#ifndef N_STROFF
#define N_STROFF(x) ( N_SYMOFF(x) + (x).a_syms )
#endif
/* Symbols */
#ifndef external_nlist
struct external_nlist {
bfd_byte e_strx[BYTES_IN_WORD]; /* index into string table of name */
bfd_byte e_type[1]; /* type of symbol */
bfd_byte e_other[1]; /* misc info (usually empty) */
bfd_byte e_desc[2]; /* description field */
bfd_byte e_value[BYTES_IN_WORD]; /* value of symbol */
};
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -