⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 debug.h

📁 java 反射机制详解示例,实现类属性及方法修改
💻 H
📖 第 1 页 / 共 3 页
字号:
/* debug.h -- Describe generic debugging information.
   Copyright 1995, 1996 Free Software Foundation, Inc.
   Written by Ian Lance Taylor <ian@cygnus.com>.

   This file is part of GNU Binutils.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
   02111-1307, USA.  */

#ifndef DEBUG_H
#define DEBUG_H

/* This header file describes a generic debugging information format.
   We may eventually have readers which convert different formats into
   this generic format, and writers which write it out.  The initial
   impetus for this was writing a convertor from stabs to HP IEEE-695
   debugging format.  */

/* Different kinds of types.  */

enum debug_type_kind
{
  /* Not used.  */
  DEBUG_KIND_ILLEGAL,
  /* Indirect via a pointer.  */
  DEBUG_KIND_INDIRECT,
  /* Void.  */
  DEBUG_KIND_VOID,
  /* Integer.  */
  DEBUG_KIND_INT,
  /* Floating point.  */
  DEBUG_KIND_FLOAT,
  /* Complex.  */
  DEBUG_KIND_COMPLEX,
  /* Boolean.  */
  DEBUG_KIND_BOOL,
  /* Struct.  */
  DEBUG_KIND_STRUCT,
  /* Union.  */
  DEBUG_KIND_UNION,
  /* Class.  */
  DEBUG_KIND_CLASS,
  /* Union class (can this really happen?).  */
  DEBUG_KIND_UNION_CLASS,
  /* Enumeration type.  */
  DEBUG_KIND_ENUM,
  /* Pointer.  */
  DEBUG_KIND_POINTER,
  /* Function.  */
  DEBUG_KIND_FUNCTION,
  /* Reference.  */
  DEBUG_KIND_REFERENCE,
  /* Range.  */
  DEBUG_KIND_RANGE,
  /* Array.  */
  DEBUG_KIND_ARRAY,
  /* Set.  */
  DEBUG_KIND_SET,
  /* Based pointer.  */
  DEBUG_KIND_OFFSET,
  /* Method.  */
  DEBUG_KIND_METHOD,
  /* Const qualified type.  */
  DEBUG_KIND_CONST,
  /* Volatile qualified type.  */
  DEBUG_KIND_VOLATILE,
  /* Named type.  */
  DEBUG_KIND_NAMED,
  /* Tagged type.  */
  DEBUG_KIND_TAGGED
};

/* Different kinds of variables.  */

enum debug_var_kind
{
  /* Not used.  */
  DEBUG_VAR_ILLEGAL,
  /* A global variable.  */
  DEBUG_GLOBAL,
  /* A static variable.  */
  DEBUG_STATIC,
  /* A local static variable.  */
  DEBUG_LOCAL_STATIC,
  /* A local variable.  */
  DEBUG_LOCAL,
  /* A register variable.  */
  DEBUG_REGISTER
};

/* Different kinds of function parameters.  */

enum debug_parm_kind
{
  /* Not used.  */
  DEBUG_PARM_ILLEGAL,
  /* A stack based parameter.  */
  DEBUG_PARM_STACK,
  /* A register parameter.  */
  DEBUG_PARM_REG,
  /* A stack based reference parameter.  */
  DEBUG_PARM_REFERENCE,
  /* A register reference parameter.  */
  DEBUG_PARM_REF_REG
};

/* Different kinds of visibility.  */

enum debug_visibility
{
  /* A public field (e.g., a field in a C struct).  */
  DEBUG_VISIBILITY_PUBLIC,
  /* A protected field.  */
  DEBUG_VISIBILITY_PROTECTED,
  /* A private field.  */
  DEBUG_VISIBILITY_PRIVATE,
  /* A field which should be ignored.  */
  DEBUG_VISIBILITY_IGNORE
};

/* A type.  */

#define DEBUG_TYPE_NULL ((debug_type) NULL)

/* A field in a struct or union.  */

#define DEBUG_FIELD_NULL ((debug_field) NULL)

/* A base class for an object.  */

#define DEBUG_BASECLASS_NULL ((debug_baseclass) NULL)

/* A method of an object.  */

#define DEBUG_METHOD_NULL ((debug_method) NULL)

/* The arguments to a method function of an object.  These indicate
   which method to run.  */

#define DEBUG_METHOD_VARIANT_NULL ((debug_method_variant) NULL)

#ifndef __cplusplus
typedef struct debug_type *debug_type;
typedef struct debug_field *debug_field;
typedef struct debug_method *debug_method;
typedef struct debug_baseclass *debug_baseclass;
typedef struct debug_method_variant *debug_method_variant;
#endif




/* This structure is passed to debug_write.  It holds function
   pointers that debug_write will call based on the accumulated
   debugging information.  */

struct debug_write_fns
{
  /* This is called at the start of each new compilation unit with the
     name of the main file in the new unit.  */
  bfd_boolean (*start_compilation_unit) PARAMS ((PTR, const char *));

  /* This is called at the start of each source file within a
     compilation unit, before outputting any global information for
     that file.  The argument is the name of the file.  */
  bfd_boolean (*start_source) PARAMS ((PTR, const char *));

  /* Each writer must keep a stack of types.  */

  /* Push an empty type onto the type stack.  This type can appear if
     there is a reference to a type which is never defined.  */
  bfd_boolean (*empty_type) PARAMS ((PTR));

  /* Push a void type onto the type stack.  */
  bfd_boolean (*void_type) PARAMS ((PTR));

  /* Push an integer type onto the type stack, given the size and
     whether it is unsigned.  */
  bfd_boolean (*int_type) PARAMS ((PTR, unsigned int, bfd_boolean));

  /* Push a floating type onto the type stack, given the size.  */
  bfd_boolean (*float_type) PARAMS ((PTR, unsigned int));

  /* Push a complex type onto the type stack, given the size.  */
  bfd_boolean (*complex_type) PARAMS ((PTR, unsigned int));

  /* Push a bfd_boolean type onto the type stack, given the size.  */
  bfd_boolean (*bool_type) PARAMS ((PTR, unsigned int));

  /* Push an enum type onto the type stack, given the tag, a NULL
     terminated array of names and the associated values.  If there is
     no tag, the tag argument will be NULL.  If this is an undefined
     enum, the names and values arguments will be NULL.  */
  bfd_boolean (*enum_type) PARAMS ((PTR, const char *, const char **,
				bfd_signed_vma *));

  /* Pop the top type on the type stack, and push a pointer to that
     type onto the type stack.  */
  bfd_boolean (*pointer_type) PARAMS ((PTR));

  /* Push a function type onto the type stack.  The second argument
     indicates the number of argument types that have been pushed onto
     the stack.  If the number of argument types is passed as -1, then
     the argument types of the function are unknown, and no types have
     been pushed onto the stack.  The third argument is true if the
     function takes a variable number of arguments.  The return type
     of the function is pushed onto the type stack below the argument
     types, if any.  */
  bfd_boolean (*function_type) PARAMS ((PTR, int, bfd_boolean));

  /* Pop the top type on the type stack, and push a reference to that
     type onto the type stack.  */
  bfd_boolean (*reference_type) PARAMS ((PTR));

  /* Pop the top type on the type stack, and push a range of that type
     with the given lower and upper bounds onto the type stack.  */
  bfd_boolean (*range_type) PARAMS ((PTR, bfd_signed_vma, bfd_signed_vma));

  /* Push an array type onto the type stack.  The top type on the type
     stack is the range, and the next type on the type stack is the
     element type.  These should be popped before the array type is
     pushed.  The arguments are the lower bound, the upper bound, and
     whether the array is a string.  */
  bfd_boolean (*array_type) PARAMS ((PTR, bfd_signed_vma, bfd_signed_vma,
				 bfd_boolean));

  /* Pop the top type on the type stack, and push a set of that type
     onto the type stack.  The argument indicates whether this set is
     a bitstring.  */
  bfd_boolean (*set_type) PARAMS ((PTR, bfd_boolean));

  /* Push an offset type onto the type stack.  The top type on the
     type stack is the target type, and the next type on the type
     stack is the base type.  These should be popped before the offset
     type is pushed.  */
  bfd_boolean (*offset_type) PARAMS ((PTR));

  /* Push a method type onto the type stack.  If the second argument
     is true, the top type on the stack is the class to which the
     method belongs; otherwise, the class must be determined by the
     class to which the method is attached.  The third argument is the
     number of argument types; these are pushed onto the type stack in
     reverse order (the first type popped is the last argument to the
     method).  A value of -1 for the third argument means that no
     argument information is available.  The fourth argument is true
     if the function takes a variable number of arguments.  The next
     type on the type stack below the domain and the argument types is
     the return type of the method.  All these types must be popped,
     and then the method type must be pushed.  */
  bfd_boolean (*method_type) PARAMS ((PTR, bfd_boolean, int, bfd_boolean));

  /* Pop the top type off the type stack, and push a const qualified
     version of that type onto the type stack.  */
  bfd_boolean (*const_type) PARAMS ((PTR));

  /* Pop the top type off the type stack, and push a volatile
     qualified version of that type onto the type stack.  */
  bfd_boolean (*volatile_type) PARAMS ((PTR));

  /* Start building a struct.  This is followed by calls to the
     struct_field function, and finished by a call to the
     end_struct_type function.  The second argument is the tag; this
     will be NULL if there isn't one.  If the second argument is NULL,
     the third argument is a constant identifying this struct for use
     with tag_type.  The fourth argument is true for a struct, false
     for a union.  The fifth argument is the size.  If this is an
     undefined struct or union, the size will be 0 and struct_field
     will not be called before end_struct_type is called.  */
  bfd_boolean (*start_struct_type) PARAMS ((PTR, const char *, unsigned int,
					bfd_boolean, unsigned int));

  /* Add a field to the struct type currently being built.  The type
     of the field should be popped off the type stack.  The arguments
     are the name, the bit position, the bit size (may be zero if the
     field is not packed), and the visibility.  */
  bfd_boolean (*struct_field) PARAMS ((PTR, const char *, bfd_vma, bfd_vma,
				   enum debug_visibility));

  /* Finish building a struct, and push it onto the type stack.  */
  bfd_boolean (*end_struct_type) PARAMS ((PTR));

  /* Start building a class.  This is followed by calls to several
     functions: struct_field, class_static_member, class_baseclass,
     class_start_method, class_method_variant,
     class_static_method_variant, and class_end_method.  The class is
     finished by a call to end_class_type.  The first five arguments
     are the same as for start_struct_type.  The sixth argument is
     true if there is a virtual function table; if there is, the
     seventh argument is true if the virtual function table can be
     found in the type itself, and is false if the type of the object
     holding the virtual function table should be popped from the type
     stack.  */
  bfd_boolean (*start_class_type) PARAMS ((PTR, const char *, unsigned int,
				       bfd_boolean, unsigned int, bfd_boolean,
				       bfd_boolean));

  /* Add a static member to the class currently being built.  The
     arguments are the field name, the physical name, and the
     visibility.  The type must be popped off the type stack.  */
  bfd_boolean (*class_static_member) PARAMS ((PTR, const char *, const char *,
					  enum debug_visibility));
  
  /* Add a baseclass to the class currently being built.  The type of
     the baseclass must be popped off the type stack.  The arguments
     are the bit position, whether the class is virtual, and the
     visibility.  */
  bfd_boolean (*class_baseclass) PARAMS ((PTR, bfd_vma, bfd_boolean,
				      enum debug_visibility));

  /* Start adding a method to the class currently being built.  This
     is followed by calls to class_method_variant and
     class_static_method_variant to describe different variants of the
     method which take different arguments.  The method is finished
     with a call to class_end_method.  The argument is the method
     name.  */
  bfd_boolean (*class_start_method) PARAMS ((PTR, const char *));

  /* Describe a variant to the class method currently being built.
     The type of the variant must be popped off the type stack.  The
     second argument is the physical name of the function.  The
     following arguments are the visibility, whether the variant is
     const, whether the variant is volatile, the offset in the virtual
     function table, and whether the context is on the type stack
     (below the variant type).  */
  bfd_boolean (*class_method_variant) PARAMS ((PTR, const char *,
					   enum debug_visibility,
					   bfd_boolean, bfd_boolean,
					   bfd_vma, bfd_boolean));

  /* Describe a static variant to the class method currently being
     built.  The arguments are the same as for class_method_variant,
     except that the last two arguments are omitted.  The type of the
     variant must be popped off the type stack.  */
  bfd_boolean (*class_static_method_variant) PARAMS ((PTR, const char *,
						  enum debug_visibility,
						  bfd_boolean, bfd_boolean));

  /* Finish describing a class method.  */
  bfd_boolean (*class_end_method) PARAMS ((PTR));

  /* Finish describing a class, and push it onto the type stack.  */
  bfd_boolean (*end_class_type) PARAMS ((PTR));

  /* Push a type on the stack which was given a name by an earlier
     call to typdef.  */
  bfd_boolean (*typedef_type) PARAMS ((PTR, const char *));

  /* Push a tagged type on the stack which was defined earlier.  If
     the second argument is not NULL, the type was defined by a call
     to tag.  If the second argument is NULL, the type was defined by
     a call to start_struct_type or start_class_type with a tag of
     NULL and the number of the third argument.  Either way, the
     fourth argument is the tag kind.  Note that this may be called
     for a struct (class) being defined, in between the call to
     start_struct_type (start_class_type) and the call to
     end_struct_type (end_class_type).  */
  bfd_boolean (*tag_type) PARAMS ((PTR, const char *, unsigned int,
			       enum debug_type_kind));

  /* Pop the type stack, and typedef it to the given name.  */
  bfd_boolean (*typdef) PARAMS ((PTR, const char *));

  /* Pop the type stack, and declare it as a tagged struct or union or
     enum or whatever.  The tag passed down here is redundant, since
     was also passed when enum_type, start_struct_type, or
     start_class_type was called.  */
  bfd_boolean (*tag) PARAMS ((PTR, const char *));

  /* This is called to record a named integer constant.  */
  bfd_boolean (*int_constant) PARAMS ((PTR, const char *, bfd_vma));

  /* This is called to record a named floating point constant.  */
  bfd_boolean (*float_constant) PARAMS ((PTR, const char *, double));

  /* This is called to record a typed integer constant.  The type is
     popped off the type stack.  */
  bfd_boolean (*typed_constant) PARAMS ((PTR, const char *, bfd_vma));

  /* This is called to record a variable.  The type is popped off the
     type stack.  */
  bfd_boolean (*variable) PARAMS ((PTR, const char *, enum debug_var_kind,
			       bfd_vma));

  /* Start writing out a function.  The return type must be popped off
     the stack.  The bfd_boolean is true if the function is global.  This
     is followed by calls to function_parameter, followed by block
     information.  */
  bfd_boolean (*start_function) PARAMS ((PTR, const char *, bfd_boolean));

  /* Record a function parameter for the current function.  The type
     must be popped off the stack.  */
  bfd_boolean (*function_parameter) PARAMS ((PTR, const char *,
					 enum debug_parm_kind, bfd_vma));

  /* Start writing out a block.  There is at least one top level block
     per function.  Blocks may be nested.  The argument is the
     starting address of the block.  */
  bfd_boolean (*start_block) PARAMS ((PTR, bfd_vma));

  /* Finish writing out a block.  The argument is the ending address
     of the block.  */
  bfd_boolean (*end_block) PARAMS ((PTR, bfd_vma));

  /* Finish writing out a function.  */
  bfd_boolean (*end_function) PARAMS ((PTR));

  /* Record line number information for the current compilation unit.  */
  bfd_boolean (*lineno) PARAMS ((PTR, const char *, unsigned long, bfd_vma));
};

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -