📄 tutorial_27.htm
字号:
<table border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td><img src="Tutorial_27_files/tl.png" height="28" width="28"></td><td width="100%"><img src="Tutorial_27_files/tc.png" height="28" width="100%"></td><td><img src="Tutorial_27_files/tr.png" height="28" width="28"></td></tr></tbody></table><table border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td background="Tutorial_27_files/l.png"><img src="Tutorial_27_files/l.png"></td><td valign="top" width="100%"><p>现在从setConnectivity函数开始,事情变得越来越复杂了,这个函数用来查找每个面的相邻的顶点,下面是它的伪代码:
</p>
</td><td background="Tutorial_27_files/r.png"><img src="Tutorial_27_files/r.png"></td></tr></tbody></table><table border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td><img src="Tutorial_27_files/bl.png" height="28" width="28"></td><td width="100%"><img src="Tutorial_27_files/bc.png" height="28" width="100%"></td><td><img src="Tutorial_27_files/br.png" height="28" width="28"></td></tr></tbody></table>
<font color="#aaffaa" size="3">
<pre>对于模型中的每一个面A<br> 对于面A中的每一条边<br> 如果我们不只到这条边相邻的顶点<br> 那么对于模型中除了面A外的每一个面B<br> 对于面B中的每一条边<br> 如果面A的边和面B的边是同一条边,那么这两个面相邻<br> 设置面A和面B的相邻属性</pre>
</font>
<table border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td><img src="Tutorial_27_files/tl.png" height="28" width="28"></td><td width="100%"><img src="Tutorial_27_files/tc.png" height="28" width="100%"></td><td><img src="Tutorial_27_files/tr.png" height="28" width="28"></td></tr></tbody></table><table border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td background="Tutorial_27_files/l.png"><img src="Tutorial_27_files/l.png"></td>
<td valign="top" width="100%">下面的代码完成上面伪代码中最后两行的内容,你先获得每个面中边的两个顶点,然后检测他们是否相邻,如果是则设置各自的相邻顶点信息</td>
<td background="Tutorial_27_files/r.png"><img src="Tutorial_27_files/r.png"></td></tr></tbody></table><table border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td><img src="Tutorial_27_files/bl.png" height="28" width="28"></td><td width="100%"><img src="Tutorial_27_files/bc.png" height="28" width="100%"></td><td><img src="Tutorial_27_files/br.png" height="28" width="28"></td></tr></tbody></table>
<font color="#aaffaa" size="3">
<pre> int vertA1 = pFaceA->vertexIndices[edgeA];
int vertA2 = pFaceA->vertexIndices[( edgeA+1 )%3];
int vertB1 = pFaceB->vertexIndices[edgeB];
int vertB2 = pFaceB->vertexIndices[( edgeB+1 )%3];
<font color="#ffffaa">// 测试他们是否为同一边,如果是则设置相应的相邻顶点信息</font>
if (( vertA1 == vertB1 && vertA2 == vertB2 ) || ( vertA1 == vertB2 && vertA2 == vertB1 ))
{
pFaceA->neighbourIndices[edgeA] = faceB;
pFaceB->neighbourIndices[edgeB] = faceA;
edgeFound = true;
break;
}
</pre>
</font>
<table border="0" cellpadding="0" cellspacing="0" width="100%">
<tbody><tr>
<td><img src="Tutorial_27_files/tl.png" height="28" width="28"></td>
<td width="100%"><img src="Tutorial_27_files/tc.png" height="28" width="100%"></td>
<td><img src="Tutorial_27_files/tr.png" height="28" width="28"></td>
</tr>
</tbody></table>
<table border="0" cellpadding="0" cellspacing="0" width="100%">
<tbody><tr>
<td background="Tutorial_27_files/l.png"><img src="Tutorial_27_files/l.png"></td>
<td valign="top" width="100%">完整的SetConnectivity函数的代码如下</td>
<td background="Tutorial_27_files/r.png"><img src="Tutorial_27_files/r.png"></td>
</tr>
</tbody></table>
<table border="0" cellpadding="0" cellspacing="0" width="100%">
<tbody><tr>
<td><img src="Tutorial_27_files/bl.png" height="28" width="28"></td>
<td width="100%"><img src="Tutorial_27_files/bc.png" height="28" width="100%"></td>
<td><img src="Tutorial_27_files/br.png" height="28" width="28"></td>
</tr>
</tbody></table>
<pre><font color="#aaffaa" size="3">
<font color="#ffffaa">// 设置相邻顶点信息</font>
inline void SetConnectivity(glObject *o){
unsigned int p1i, p2i, p1j, p2j;
unsigned int P1i, P2i, P1j, P2j;
unsigned int i,j,ki,kj;
<font color="#ffffaa">//对于模型中的每一个面A</font>
for(i=0;i<o->nPlanes-1;i++)
{
<font color="#ffffaa">//对于除了此面的其它的面B</font>
for(j=i+1;j<o->nPlanes;j++)
{
<font color="#ffffaa">//对于面A中的每一个相邻的顶点</font>
for(ki=0;ki<3;ki++)
{
<font color="#ffffaa">//如果这个相邻的顶点没有被设置</font>
if(!o->planes[i].neigh[ki])
{
for(kj=0;kj<3;kj++)
{
p1i=ki;
p1j=kj;
p2i=(ki+1)%3;
p2j=(kj+1)%3;
p1i=o->planes[i].p[p1i];
p2i=o->planes[i].p[p2i];
p1j=o->planes[j].p[p1j];
p2j=o->planes[j].p[p2j];
<font color="#ffffaa">//如果面A的边P1i->P1j和面B的边P2i->P2j为同一条边,则又下面的公式的P1i=P1j,并且P2i=P2j</font>
P1i=((p1i+p2i)-abs(p1i-p2i))/2;
P2i=((p1i+p2i)+abs(p1i-p2i))/2;
P1j=((p1j+p2j)-abs(p1j-p2j))/2;
P2j=((p1j+p2j)+abs(p1j-p2j))/2;
<font color="#ffffaa">//记录与这个边相邻的面的索引</font>
if((P1i==P1j) && (P2i==P2j))
{
o->planes[i].neigh[ki] = j+1;
o->planes[j].neigh[kj] = i+1;
}
}
}
}
}
}
}
</o-></o-></font></pre>
<font color="#aaffaa" size="3"> </font>
<table border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td><img src="Tutorial_27_files/tl.png" height="28" width="28"></td><td width="100%"><img src="Tutorial_27_files/tc.png" height="28" width="100%"></td><td><img src="Tutorial_27_files/tr.png" height="28" width="28"></td></tr></tbody></table><table border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td background="Tutorial_27_files/l.png"><img src="Tutorial_27_files/l.png"></td>
<td valign="top" width="100%">下面的函数用来绘制模型</td>
<td background="Tutorial_27_files/r.png"><img src="Tutorial_27_files/r.png"></td></tr></tbody></table><table border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td><img src="Tutorial_27_files/bl.png" height="28" width="28"></td><td width="100%"><img src="Tutorial_27_files/bc.png" height="28" width="100%"></td><td><img src="Tutorial_27_files/br.png" height="28" width="28"></td></tr></tbody></table><font color="#aaffaa" size="3"></font><pre><font color="#aaffaa" size="3"><font color="#ffffaa">// 绘制模型,像以前一样它绘制组成模型的三角形</font>
void drawObject( const ShadowedObject& object )
{
glBegin( GL_TRIANGLES );
for ( int i = 0; i < object.nFaces; i++ )
{
const Face& face = object.pFaces[i];
for ( int j = 0; j < 3; j++ )
{
const Point3f& vertex = object.pVertices[face.vertexIndices[j]];
glNormal3f( face.normals[j].x, face.normals[j].y, face.normals[j].z );
glVertex3f( vertex.x, vertex.y, vertex.z );
}
}
glEnd();
}
</font></pre><table border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td><img src="Tutorial_27_files/tl.png" height="28" width="28"></td><td width="100%"><img src="Tutorial_27_files/tc.png" height="28" width="100%"></td><td><img src="Tutorial_27_files/tr.png" height="28" width="28"></td></tr></tbody></table><table border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td background="Tutorial_27_files/l.png"><img src="Tutorial_27_files/l.png"></td>
<td valign="top" width="100%">下面的函数用来计算平面的方程参数</td>
<td background="Tutorial_27_files/r.png"><img src="Tutorial_27_files/r.png"></td></tr></tbody></table><table border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td><img src="Tutorial_27_files/bl.png" height="28" width="28"></td><td width="100%"><img src="Tutorial_27_files/bc.png" height="28" width="100%"></td><td><img src="Tutorial_27_files/br.png" height="28" width="28"></td></tr></tbody></table><font color="#aaffaa" size="3">
</font><pre><font color="#aaffaa" size="3">void calculatePlane( const ShadowedObject& object, Face& face )
{
<font color="#ffffaa">// 获得平面的三个顶点</font>
const Point3f& v1 = object.pVertices[face.vertexIndices[0]];
const Point3f& v2 = object.pVertices[face.vertexIndices[1]];
const Point3f& v3 = object.pVertices[face.vertexIndices[2]];
face.planeEquation.a = v1.y*(v2.z-v3.z) + v2.y*(v3.z-v1.z) + v3.y*(v1.z-v2.z);
face.planeEquation.b = v1.z*(v2.x-v3.x) + v2.z*(v3.x-v1.x) + v3.z*(v1.x-v2.x);
face.planeEquation.c = v1.x*(v2.y-v3.y) + v2.x*(v3.y-v1.y) + v3.x*(v1.y-v2.y);
face.planeEquation.d = -( v1.x*( v2.y*v3.z - v3.y*v2.z ) +
v2.x*(v3.y*v1.z - v1.y*v3.z) +
v3.x*(v1.y*v2.z - v2.y*v1.z) );
}
</font></pre>
<table border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td><img src="Tutorial_27_files/tl.png" height="28" width="28"></td><td width="100%"><img src="Tutorial_27_files/tc.png" height="28" width="100%"></td><td><img src="Tutorial_27_files/tr.png" height="28" width="28"></td></tr></tbody></table><table border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td background="Tutorial_27_files/l.png"><img src="Tutorial_27_files/l.png"></td>
<td valign="top" width="100%">你还可以呼吸么?好的,我们继续:) 接下来你将学习如何去投影,castShadow函数几乎用到了所有OpenGL的功能,完成这个函数后,把它传递到doShadowPass函数来通过两个渲染通道绘制出阴影.<br>
首先,我们看看哪些面面对着灯光,我们可以通过灯光位置和平面方程计算出.如果灯光到平面的位置大于0,则位于灯光的上方,否则位于灯光的下方(如果有什么问题,翻一下你高中的解析几何).</td>
<td background="Tutorial_27_files/r.png"><img src="Tutorial_27_files/r.png"></td></tr></tbody></table><table border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td><img src="Tutorial_27_files/bl.png" height="28" width="28"></td><td width="100%"><img src="Tutorial_27_files/bc.png" height="28" width="100%"></td><td><img src="Tutorial_27_files/br.png" height="28" width="28"></td></tr></tbody></table><font color="#aaffaa" size="3">
<pre>void castShadow( ShadowedObject& object, GLfloat *lightPosition )
{
<font color="#ffffaa">// 设置哪些面在灯光的前面</font>
for ( int i = 0; i < object.nFaces; i++ )
{
const Plane& plane = object.pFaces[i].planeEquation;
GLfloat side = plane.a*lightPosition[0]+
plane.b*lightPosition[1]+
plane.c*lightPosition[2]+
plane.d;
if ( side > 0 )
object.pFaces[i].visible = true;
else
object.pFaces[i].visible = false;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -