📄 itkcovariancecalculator.txx
字号:
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkCovarianceCalculator.txx,v $
Language: C++
Date: $Date: 2008-06-27 12:57:43 $
Version: $Revision: 1.19 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkCovarianceCalculator_txx
#define __itkCovarianceCalculator_txx
#include "itkCovarianceCalculator.h"
namespace itk{
namespace Statistics{
template< class TSample >
CovarianceCalculator< TSample >
::CovarianceCalculator() :
m_Mean( 0 ),
m_InternalMean( 0 )
{
}
template< class TSample >
CovarianceCalculator< TSample >
::~CovarianceCalculator()
{
if ( m_InternalMean != 0 )
{
delete m_InternalMean ;
m_InternalMean = 0 ;
}
}
template< class TSample >
void
CovarianceCalculator< TSample >
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os,indent);
os << indent << "Output: " << m_Output << std::endl;
if ( m_Mean != 0)
{
os << indent << "Mean: [" << *m_Mean << "]" << std::endl ;
}
else
{
os << indent << "Mean: not set" << std::endl ;
}
if ( m_InternalMean != 0)
{
os << indent << "Internal Mean: [" << *m_InternalMean << "]" << std::endl ;
}
else
{
os << indent << "Internal Mean: not used" << std::endl ;
}
}
template< class TSample >
void
CovarianceCalculator< TSample >
::SetMean( MeanType* mean )
{
const MeasurementVectorSizeType measurementVectorSize =
this->GetMeasurementVectorSize();
if ( m_InternalMean != mean && m_InternalMean != 0 )
{
delete m_InternalMean ;
m_InternalMean = 0 ;
}
if( mean )
{
const MeasurementVectorSizeType measurementVectorLength =
MeasurementVectorTraits::Assert( mean, measurementVectorSize,
"Length mismatch: CovarianceCalculator::SetMean" );
if( measurementVectorLength )
{ this->SetMeasurementVectorSize( measurementVectorLength ); }
}
m_Mean = mean ;
}
template< class TSample >
typename CovarianceCalculator< TSample >::MeanType*
CovarianceCalculator< TSample >
::GetMean( void )
{
if ( m_InternalMean != 0 )
{
return m_InternalMean ;
}
else
{
return m_Mean ;
}
}
template< class TSample >
const typename CovarianceCalculator< TSample >::OutputType*
CovarianceCalculator< TSample >
::GetOutput( void ) const
{
return & m_Output ;
}
template< class TSample >
inline void
CovarianceCalculator< TSample >
::ComputeCovarianceWithGivenMean( void )
{
// Assert at run time that the given mean has the same length as
// measurement vectors in the sample and that the size is non-zero.
MeasurementVectorTraits::Assert( m_Mean, this->GetMeasurementVectorSize(),
"Length mismatch: CovarianceCalculator::ComputeCovarianceWithGivenMean");
const MeasurementVectorSizeType measurementVectorSize =
this->GetMeasurementVectorSize();
m_Output.SetSize( measurementVectorSize, measurementVectorSize );
m_Output.Fill(0.0);
double frequency;
double totalFrequency = 0.0;
unsigned int row, col;
unsigned int i;
typename TSample::ConstIterator iter = this->GetInputSample()->Begin();
typename TSample::ConstIterator end = this->GetInputSample()->End();
MeanType diff( measurementVectorSize );
typename TSample::MeasurementVectorType measurements;
// fills the lower triangle and the diagonal cells in the covariance matrix
while (iter != end)
{
frequency = iter.GetFrequency();
totalFrequency += frequency;
measurements = iter.GetMeasurementVector();
for (i = 0 ; i < measurementVectorSize ; i++)
{
diff[i] = measurements[i] - (*m_Mean)[i];
}
for ( row = 0; row < measurementVectorSize ; row++)
{
for ( col = 0; col < row + 1 ; col++)
{
m_Output(row,col) += frequency * diff[row] * diff[col];
}
}
++iter ;
}
// fills the upper triangle using the lower triangle
for (row = 1 ; row < measurementVectorSize ; row++)
{
for (col = 0 ; col < row ; col++)
{
m_Output(col, row) =
m_Output(row, col);
}
}
if ( totalFrequency > 1e-6 )
{
m_Output /= ( totalFrequency - 1.0f );
}
else
{
m_Output.Fill( 0.0f );
}
}
template< class TSample >
inline void
CovarianceCalculator< TSample >
::ComputeCovarianceWithoutGivenMean( void )
{
const MeasurementVectorSizeType measurementVectorSize =
this->GetMeasurementVectorSize();
m_Output.SetSize( measurementVectorSize, measurementVectorSize );
m_Output.Fill(0.0);
m_InternalMean = new MeanType(measurementVectorSize);
m_InternalMean->Fill(0.0);
double frequency;
double totalFrequency = 0.0;
unsigned int row, col;
unsigned int i;
typename TSample::ConstIterator iter = this->GetInputSample()->Begin();
typename TSample::ConstIterator end = this->GetInputSample()->End();
MeanType diff( measurementVectorSize );
typename TSample::MeasurementVectorType measurements;
//
// fills the lower triangle and the diagonal cells in the covariance matrix
while (iter != end)
{
frequency = iter.GetFrequency();
if ( frequency == 0 )
{
++iter;
continue;
}
totalFrequency += frequency;
measurements = iter.GetMeasurementVector();
for ( i = 0 ; i < measurementVectorSize ; ++i )
{
diff[i] = measurements[i] - (*m_InternalMean)[i];
}
// updates the mean vector
double tempWeight = frequency / totalFrequency;
for ( i = 0 ; i < measurementVectorSize ; ++i )
{
(*m_InternalMean)[i] += tempWeight * diff[i];
}
// updates the covariance matrix
tempWeight = tempWeight * ( totalFrequency - frequency );
for ( row = 0; row < measurementVectorSize ; row++ )
{
for ( col = 0; col < row + 1 ; col++)
{
m_Output(row,col) +=
tempWeight * diff[row] * diff[col];
}
}
++iter;
}
// fills the upper triangle using the lower triangle
for (row = 1 ; row < measurementVectorSize ; row++)
{
for (col = 0 ; col < row ; col++)
{
m_Output(col, row) =
m_Output(row, col);
}
}
if ( totalFrequency > 1e-6 )
{
m_Output /= ( totalFrequency - 1.0f );
}
else
{
m_Output.Fill( 0.0f );
}
}
template< class TSample >
inline void
CovarianceCalculator< TSample >
::GenerateData()
{
const MeasurementVectorSizeType measurementVectorSize =
this->GetMeasurementVectorSize();
if( measurementVectorSize == 0 )
{
itkExceptionMacro( <<
"Measurement vector size must be set. Use SetMeasurementVectorSize( .. )");
}
if ( m_Mean == 0 )
{
this->ComputeCovarianceWithoutGivenMean();
}
else
{
this->ComputeCovarianceWithGivenMean();
}
}
} // end of namespace Statistics
} // end of namespace itk
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -