⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 itktdistribution.h

📁 DTMK软件开发包,此为开源软件,是一款很好的医学图像开发资源.
💻 H
字号:
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkTDistribution.h,v $
  Language:  C++
  Date:      $Date: 2007-02-24 13:47:32 $
  Version:   $Revision: 1.1 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkTDistribution_h
#define __itkTDistribution_h

#include "itkProbabilityDistribution.h"
#include "itkNumericTraits.h"

namespace itk { 
namespace Statistics {

/** \class TDistribution
 * \brief TDistribution class defines the interface for a univariate
 * Student-t distribution (pdfs, cdfs, etc.).
 *
 * TDistribution provides access to the probability density
 * function (pdf), the cumulative distribution function (cdf), and the
 * inverse cumulative distribution function for a Student-t distribution.
 *
 * The EvaluatePDF(), EvaluateCDF, EvaluateInverseCDF() methods are
 * all virtual, allowing algorithms to be written with an abstract
 * interface to a distribution (with said distribution provided to the
 * algorithm at run-time).  Static methods, not requiring an instance
 * of the distribution, are also provided.  The static methods allow
 * for optimized access to distributions when the distribution is
 * known a priori to the algorithm.
 *
 * TDistributions are univariate.  Multivariate versions may
 * be provided under a separate superclass (since the parameters to the
 * pdf and cdf would have to be vectors not scalars).
 *
 * TDistributions can be used for t tests.
 *
 * \note This work is part of the National Alliance for Medical Image
 * Computing (NAMIC), funded by the National Institutes of Health
 * through the NIH Roadmap for Medical Research, Grant U54 EB005149.
 * Information on the National Centers for Biomedical Computing
 * can be obtained from http://nihroadmap.nih.gov/bioinformatics.  
 */
class ITK_EXPORT TDistribution :
    public ProbabilityDistribution
{
public:
  /** Standard class typedefs */
  typedef TDistribution            Self;
  typedef ProbabilityDistribution  Superclass;
  typedef SmartPointer<Self>       Pointer;
  typedef SmartPointer<const Self> ConstPointer;

  /** Strandard macros */
  itkTypeMacro(TDistribution, ProbabilityDistribution);

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** Return the number of parameters.  For a univariate Student-t
   * distribution, the number of parameters is 1 (degrees of freedom) */
  virtual unsigned long GetNumberOfParameters() const { return 1; }
  
  /** Evaluate the probability density function (pdf). The parameters
   * of the distribution are  assigned via SetParameters().  */
  virtual double EvaluatePDF(double x) const;

  /** Evaluate the probability density function (pdf). The parameters
   * for the distribution are passed as a parameters vector. The
   * ordering of the parameters is (degrees of freedom). */
  virtual double EvaluatePDF(double x, const ParametersType&) const;

  /** Evaluate the probability density function (pdf). The parameters
   * of the distribution are passed as separate parameters. */
  virtual double EvaluatePDF(double x, long degreesOfFreedom) const;
  
  /** Evaluate the cumulative distribution function (cdf). The parameters
   * of the distribution are  assigned via SetParameters().  */
  virtual double EvaluateCDF(double x) const;

  /** Evaluate the cumulative distribution function (cdf). The parameters
   * for the distribution are passed as a parameters vector. The
   * ordering of the parameters is (degreesOfFreedom). */
  virtual double EvaluateCDF(double x, const ParametersType&) const;
  
  /** Evaluate the cumulative distribution function (cdf). The parameters
   * of the distribution are passed as separate parameters. */
  virtual double EvaluateCDF(double x, long degreesOfFreedom) const;

  /** Evaluate the inverse cumulative distribution function (inverse
   * cdf).  Parameter p must be between 0.0 and 1.0. The parameters
   * of the distribution are  assigned via SetParameters().  */
  virtual double EvaluateInverseCDF(double p) const;

  /** Evaluate the inverse cumulative distribution function (inverse
   * cdf).  Parameter p must be between 0.0 and 1.0.  The parameters
   * for the distribution are passed as a parameters vector. The
   * ordering of the parameters is (degrees of freedom). */
  virtual double EvaluateInverseCDF(double p, const ParametersType&) const;
  
  /** Evaluate the inverse cumulative distribution function (inverse
   * cdf).  Parameter p must be between 0.0 and 1.0.  The parameters
   * of the distribution are passed as separate parameters. */
  virtual double EvaluateInverseCDF(double p, long degreesOfFreedom) const;

  /** Set the number of degrees of freedom in the Student-t distribution.
   * Defaults to 1 */
  virtual void SetDegreesOfFreedom(long);

  /** Get the number of degrees of freedom in the t
   * distribution. Defaults to 1 */
  virtual long GetDegreesOfFreedom() const;

  /** Does the Student-t distribution have a mean? */
  virtual bool HasMean() const { return true; }
  
  /** Get the mean of the distribution. */
  virtual double GetMean() const;

  /** Does the Student-t distribution have a variance? Variance is
   * only defined for degrees of freedom greater than 2 */
  virtual bool HasVariance() const;
  
  /** Get the variance of the distribution. If the variance does not exist,
   * then quiet_NaN is returned. */
  virtual double GetVariance() const;


  /** Static method to evaluate the probability density function (pdf)
   * of a Student-t with a specified number of degrees of freedom. The
   * static method provides optimized access without requiring an
   * instance of the class. The degrees of freedom for the
   * distribution are passed in a parameters vector. */
  static double PDF(double x, const ParametersType&);
  
  /** Static method to evaluate the probability density function (pdf)
   * of a Student-t with a specified number of degrees of freedom. The
   * static method provides optimized access without requiring an
   * instance of the class. */
  static double PDF(double x, long degreesOfFreedom);
  
  /** Static method to evaluate the cumulative distribution function
   * (cdf) of a Student-t with a specified number of degrees of
   * freedom. The static method provides optimized access without
   * requiring an instance of the class. The degrees of freedom are
   * passed as a parameters vector.
   *
   * This is based on Abramowitz and Stegun 26.7.1. Accuracy is
   * approximately 10^-14.
   */
  static double CDF(double x, const ParametersType&);

  /** Static method to evaluate the cumulative distribution function
   * (cdf) of a Student-t with a specified number of degrees of
   * freedom. The static method provides optimized access without
   * requiring an instance of the class.
   *
   * This is based on Abramowitz and Stegun 26.7.1. Accuracy is
   * approximately 10^-14.
   */
  static double CDF(double x, long degreesOfFreedom);

  /** Static method to evaluate the inverse cumulative distribution
   * function of a Student-t with a specified number of degrees of
   * freedom.  The static method provides optimized access without
   * requiring an instance of the class. Parameter p must be between
   * 0.0 and 1.0. The degrees of freedom are passed as a parameters vector.
   *
   * This is based on Abramowitz and Stegun 26.7.5 followed by a few
   * Newton iterations to improve the precision at low degrees of
   * freedom. Accuracy is approximately 10^-10.
   **/
  static double InverseCDF(double p, const ParametersType&);

  /** Static method to evaluate the inverse cumulative distribution
   * function of a Student-t with a specified number of degrees of
   * freedom.  The static method provides optimized access without
   * requiring an instance of the class. Parameter p must be between
   * 0.0 and 1.0.
   *
   * This is based on Abramowitz and Stegun 26.7.5 followed by a few
   * Newton iterations to improve the precision at low degrees of
   * freedom. Accuracy is approximately 10^-10.
   **/
  static double InverseCDF(double p, long degreesOfFreedom);

protected:
  TDistribution(void);
  virtual ~TDistribution(void) {}

  void PrintSelf(std::ostream& os, Indent indent) const;

private:
  TDistribution(const Self&); //purposely not implemented
  void operator=(const Self&); //purposely not implemented
  
}; // end of class

} // end of namespace Statistics
} // end namespace itk

#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -