⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 itkexpectationmaximizationmixturemodelestimator.txx

📁 DTMK软件开发包,此为开源软件,是一款很好的医学图像开发资源.
💻 TXX
字号:
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkExpectationMaximizationMixtureModelEstimator.txx,v $
  Language:  C++
  Date:      $Date: 2006-03-19 04:37:20 $
  Version:   $Revision: 1.16 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkExpectationMaximizationMixtureModelEstimator_txx
#define __itkExpectationMaximizationMixtureModelEstimator_txx

#include "itkExpectationMaximizationMixtureModelEstimator.h"
#include "itkNumericTraits.h"

namespace itk{ 
namespace Statistics{
  
template< class TSample >
ExpectationMaximizationMixtureModelEstimator< TSample >
::ExpectationMaximizationMixtureModelEstimator()
{
  m_TerminationCode = NOT_CONVERGED ;
}
 
template< class TSample >
void
ExpectationMaximizationMixtureModelEstimator< TSample >
::PrintSelf(std::ostream& os, Indent indent) const
{
  Superclass::PrintSelf(os, indent) ;
}


template< class TSample >
void
ExpectationMaximizationMixtureModelEstimator< TSample >
::SetMaximumIteration(int numberOfIterations) 
{
  m_MaxIteration = numberOfIterations ;
}

template< class TSample >
int
ExpectationMaximizationMixtureModelEstimator< TSample >
::GetMaximumIteration() 
{
  return m_MaxIteration ;
}

template< class TSample >
void
ExpectationMaximizationMixtureModelEstimator< TSample >
::SetInitialProportions(ProportionVectorType &proportions) 
{
  m_InitialProportions = proportions ;
}

template< class TSample >
typename ExpectationMaximizationMixtureModelEstimator< TSample >::ProportionVectorType*
ExpectationMaximizationMixtureModelEstimator< TSample >
::GetInitialProportions() 
{
  return m_InitialProportions ;
}

template< class TSample >
typename ExpectationMaximizationMixtureModelEstimator< TSample >::ProportionVectorType*
ExpectationMaximizationMixtureModelEstimator< TSample >
::GetProportions() 
{
  return &m_Proportions ;
}

template< class TSample >
void
ExpectationMaximizationMixtureModelEstimator< TSample >
::SetSample(const TSample* sample) 
{
  m_Sample = sample ;
}

template< class TSample >
const TSample *
ExpectationMaximizationMixtureModelEstimator< TSample >
::GetSample() const 
{
  return m_Sample ;
}


template< class TSample >
int
ExpectationMaximizationMixtureModelEstimator< TSample >
::AddComponent(ComponentType* component)
{
  m_ComponentVector.push_back(component) ;
  return static_cast<int>( m_ComponentVector.size() );
}

template< class TSample >
unsigned int
ExpectationMaximizationMixtureModelEstimator< TSample >
::GetNumberOfComponents()
{
  return m_ComponentVector.size();
}

template< class TSample >
typename ExpectationMaximizationMixtureModelEstimator< TSample >::TERMINATION_CODE
ExpectationMaximizationMixtureModelEstimator< TSample >
::GetTerminationCode()
{
  return m_TerminationCode ;
}

template< class TSample >
typename ExpectationMaximizationMixtureModelEstimator< TSample >::ComponentMembershipFunctionType* 
ExpectationMaximizationMixtureModelEstimator< TSample >
::GetComponentMembershipFunction(int componentIndex)
{
  return (m_ComponentVector[componentIndex])->GetMembershipFunction() ;
}


template< class TSample >
bool
ExpectationMaximizationMixtureModelEstimator< TSample >
::CalculateDensities()
{
  bool componentModified  = false ;

  for (unsigned int i = 0 ; i < m_ComponentVector.size() ; i++)
    {
    if ( (m_ComponentVector[i])->AreParametersModified() )
      {
      componentModified = true ;
      }
    }

  if (!componentModified)
    {
    return false ;
    }

  double temp ;
  int numberOfComponents = static_cast<int>( m_ComponentVector.size() );
  std::vector< double > tempWeights(numberOfComponents) ;

  typename TSample::ConstIterator iter = m_Sample->Begin() ;
  typename TSample::ConstIterator last = m_Sample->End() ;

  int componentIndex ;

  typedef typename TSample::FrequencyType FrequencyType ;
  FrequencyType frequency ;
  FrequencyType zeroFrequency = NumericTraits< FrequencyType >::Zero ;
  typename TSample::MeasurementVectorType mvector ;
  double density ;
  double densitySum ;
  double minDouble = NumericTraits< double >::NonpositiveMin() ;

  long measurementVectorIndex = 0 ;
  while (iter != last)
    {
    mvector = iter.GetMeasurementVector() ;
    frequency = iter.GetFrequency() ;
    densitySum = 0.0 ;
    if ( frequency > zeroFrequency )
      {
      for (componentIndex = 0 ; componentIndex < numberOfComponents ; 
           componentIndex++)
        {
        density = m_Proportions[componentIndex] *
          m_ComponentVector[componentIndex]->Evaluate(mvector) ;
        tempWeights[componentIndex] = density ;
        densitySum += density ;
        }
          
      for (componentIndex = 0 ; componentIndex < numberOfComponents ; 
           componentIndex++)
        {
        temp = tempWeights[componentIndex] ;
        temp /= densitySum ;
        m_ComponentVector[componentIndex]->SetWeight(measurementVectorIndex,
                                                     temp) ; 
        }
      }
    else
      {
      for (componentIndex = 0 ; componentIndex < numberOfComponents ; 
           componentIndex++)
        {
        m_ComponentVector[componentIndex]->SetWeight(measurementVectorIndex,
                                                     minDouble) ; 
        }
      }

    ++iter ;
    ++measurementVectorIndex ;
    }
  
  return true ;
}

template< class TSample >
double
ExpectationMaximizationMixtureModelEstimator< TSample >
::CalculateExpectation()
{
  int componentIndex, measurementVectorIndex ;
  long size = m_Sample->Size() ;
  double logProportion ;
  double sum = 0.0 ;
  double temp = 0.0 ;
  for (componentIndex = 0 ; componentIndex < m_ComponentVector.size() ;
       componentIndex++)
    {
    logProportion = vcl_log(m_Proportions[componentIndex]) ; 
    for (measurementVectorIndex = 0 ; measurementVectorIndex < size ;
         measurementVectorIndex++)
      {
      temp = m_ComponentVector[componentIndex]->
        GetWeight(measurementVectorIndex) ;
      sum += 
        temp * ( logProportion + 
                 vcl_log(m_ComponentVector[componentIndex]->
                      GetWeight(measurementVectorIndex) ) ) ;
      }
    }
  return sum ;
}

template< class TSample >
bool
ExpectationMaximizationMixtureModelEstimator< TSample >
::UpdateComponentParameters()
{
  unsigned int componentIndex ;
  bool updated = false ;
  ComponentType* component ;

  for (componentIndex = 0 ; componentIndex < m_ComponentVector.size() ;
       componentIndex++)
    {
    component = m_ComponentVector[componentIndex] ;
    component->Update() ;
    if (component->AreParametersModified())
      {
      updated = true ;
      }
    }

  return updated ;
}

template< class TSample >
bool
ExpectationMaximizationMixtureModelEstimator< TSample >
::UpdateProportions()
{
  int numberOfComponents = m_ComponentVector.size() ;
  long sampleSize = m_Sample->Size() ;
  double totalFrequency = (double) (m_Sample->GetTotalFrequency()) ;
  long i, j ;
  double tempSum ;
  bool updated = false ;

  for (i = 0 ; i < numberOfComponents ; i++)
    {
    tempSum = 0.0 ;
    for (j = 0 ; j < sampleSize ; j++)
      {
      tempSum += 
        (m_ComponentVector[i]->GetWeight(j) * 
         m_Sample->GetFrequency(j)) ;
      }

    tempSum /= totalFrequency ;

    if (tempSum != m_Proportions[i])
      {
      m_Proportions[i] = tempSum ; 
      updated = true ;
      }
    }

  return updated ;
}

template< class TSample >
void
ExpectationMaximizationMixtureModelEstimator< TSample >
::GenerateData() 
{
  m_Proportions = m_InitialProportions ;   

  int iteration = 0 ;
  m_CurrentIteration = 0 ;
  while (iteration < m_MaxIteration)
    {
    m_CurrentIteration = iteration ;
    if (this->CalculateDensities())
      {
      this->UpdateComponentParameters() ;
      this->UpdateProportions() ;
      }
    else
      {
      m_TerminationCode = CONVERGED ;
      break ;
      }
    ++iteration ;
    }
  
  m_TerminationCode = NOT_CONVERGED ;
}

template< class TSample >
void 
ExpectationMaximizationMixtureModelEstimator< TSample >
::Update()
{
  this->GenerateData() ;
}
 
} // end of namespace Statistics 
} // end of namespace itk

#endif







⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -