⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 itktdistribution.cxx

📁 DTMK软件开发包,此为开源软件,是一款很好的医学图像开发资源.
💻 CXX
字号:
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkTDistribution.cxx,v $
  Language:  C++
  Date:      $Date: 2007-02-24 13:47:32 $
  Version:   $Revision: 1.1 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/

#include "itkTDistribution.h"
#include "itkGaussianDistribution.h"
#include "itkNumericTraits.h"
#include "vnl/vnl_math.h"
#include "vnl/vnl_erf.h"

extern "C" double dbetai_(double *x, double *pin, double *qin);
extern "C" double dgamma_(double *x);

namespace itk { 
namespace Statistics {

TDistribution
::TDistribution()
{
  m_Parameters = ParametersType(1);
  m_Parameters[0] = 1.0;
}

void
TDistribution
::SetDegreesOfFreedom(long dof)
{
  bool modified = false;
  
  if (m_Parameters.GetSize() > 0)
    {
    if (m_Parameters[0] != static_cast<double>(dof) )
      {
      modified = true;
      }
    }

  if (m_Parameters.GetSize() != 1)
    {
    m_Parameters = ParametersType(1);
    }

  m_Parameters[0] = static_cast<double>(dof);

  if (modified)
    {
    this->Modified();
    }
}

long
TDistribution
::GetDegreesOfFreedom() const
{
  if (m_Parameters.GetSize() == 1)
    {
    return static_cast<long>(m_Parameters[0]);
    }
  else
    {
    InvalidArgumentError exp(__FILE__, __LINE__);
    ::itk::OStringStream message;
    message << "itk::ERROR: " << this->GetNameOfClass() 
            << "(" << this << "): "
          << "Invalid number of parameters to describe distribution.";
    exp.SetDescription(message.str());
    exp.SetLocation(ITK_LOCATION);
    throw exp;
    }
  
  return 1;
}

double
TDistribution
::PDF(double x, long degreesOfFreedom)
{
  double dof = static_cast<double>(degreesOfFreedom);
  double dofplusoneon2 = 0.5*(dof+1.0);
  double dofon2 = 0.5*dof;
  double pdf;
  
  pdf = (dgamma_(&dofplusoneon2) / dgamma_(&dofon2))
      / (sqrt(dof*vnl_math::pi) * pow(1.0 + ((x*x)/dof), dofplusoneon2));

  return pdf;
}

double
TDistribution
::PDF(double x, const ParametersType& p)
{
  if (p.GetSize() == 1)
    {
    return TDistribution::PDF(x, static_cast<long>(p[0]));
    }
  else
    {
    InvalidArgumentError exp(__FILE__, __LINE__);
    ::itk::OStringStream message;
    message << "itk::ERROR: " 
            << "TDistribution: "
          << "Invalid number of parameters to describe distribution.";
    exp.SetDescription(message.str());
    exp.SetLocation(ITK_LOCATION);
    throw exp;
    }

  return 0.0;
}

double
TDistribution
::CDF(double x, long degreesOfFreedom)
{
  double bx;
  double pin, qin;
  double dof;

  
  // Based on Abramowitz and Stegun 26.7.1, which gives the probability
  // that the absolute value of a random variable with a Student-t
  // distribution is less than or equal to a specified t.
  //
  // P[|x| <= t] = 1 - Ix(v/2, 1/2)
  //
  // where Ix is the incomplete beta function and v is the number of
  // degrees of freedom in the Student-t distribution and x is
  // v / (v + t^2).
  //
  // To calculate the cdf of the Student-t we need to convert
  // this formula.  For an x >= 0,
  //
  // P[|x| <= t] =   \int_{-t}^{t} p(x) dx
  //             = 2 \int_0^t p(x) dx
  //
  // The cdf of the Student-t is
  //
  // P[x <= t] = \int_{-\inf}^t p(x) dx
  //           = 0.5 + \int_0^t p(x) dx           (for x >= 0)
  //           = 0.5 + 0.5 * P[|x| < t]           (from above)
  //           = 0.5 + 0.5 * (1 - Ix(v/2. 1/2))   
  //           = 1 - 0.5 * Ix(v/2, 1/2)
  // 
  dof = static_cast<double>(degreesOfFreedom);
  bx = dof / (dof + (x*x));
  pin = dof / 2.0;
  qin = 0.5;

  if (x >= 0.0)
    {
    return 1.0 - 0.5 * dbetai_(&bx, &pin, &qin);
    }
  else
    {
    return 0.5 * dbetai_(&bx, &pin, &qin);
    }
}

double
TDistribution
::CDF(double x, const ParametersType& p)
{
  if (p.GetSize() == 1)
    {
    return TDistribution::CDF(x, static_cast<long>(p[0]));
    }
  else
    {
    InvalidArgumentError exp(__FILE__, __LINE__);
    ::itk::OStringStream message;
    message << "itk::ERROR: " 
            << "TDistribution: "
          << "Invalid number of parameters to describe distribution.";
    exp.SetDescription(message.str());
    exp.SetLocation(ITK_LOCATION);
    throw exp;
    }

  return 0.0;
}


double
TDistribution
::InverseCDF(double p, long degreesOfFreedom)
{
  if (p <= 0.0)
    {
    return itk::NumericTraits<double>::NonpositiveMin();
    }
  else if (p >= 1.0)
    {
    return itk::NumericTraits<double>::max();
    }

  double x;
  double dof, dof2, dof3, dof4;
  double gaussX, gaussX3, gaussX5, gaussX7, gaussX9;

  // Based on Abramowitz and Stegun 26.7.5
  dof = static_cast<double>(degreesOfFreedom);
  dof2 = dof*dof;
  dof3 = dof*dof2;
  dof4 = dof*dof3;
  
  gaussX = GaussianDistribution::InverseCDF(p);
  gaussX3 = pow(gaussX, 3.0);
  gaussX5 = pow(gaussX, 5.0);
  gaussX7 = pow(gaussX, 7.0);
  gaussX9 = pow(gaussX, 9.0);

  x = gaussX
    + (gaussX3 + gaussX) / (4.0 * dof)
    + (5.0*gaussX5 + 16.0*gaussX3 + 3*gaussX) / (96.0 * dof2)
    + (3.0*gaussX7 + 19.0*gaussX5 + 17.0*gaussX3 - 15.0*gaussX) / (384.0*dof3)
    + (79.0*gaussX9
       + 776.0*gaussX7 
       + 1482.0*gaussX5
       - 1920.0*gaussX3
       - 945.0*gaussX) / (92160.0 * dof4);

  // The polynomial approximation above is only accurate for large degrees
  // of freedom.  We'll improve the approximation by a few Newton
  // iterations.
  //
  //   0 iterations, error = 1      at 1 degree of freedom
  //   3 iterations, error = 10^-10 at 1 degree of freedom 
  // 100 iterations, erorr = 10^-12 at 1 degree of freedom
  //
  //   0 iterations, error = 10^-2  at 11 degrees of freedom
  //   3 iterations, error = 10^-11 at 11 degrees of freedom 
  // 100 iterations, erorr = 10^-12 at 11 degrees of freedom
  //
  //
  // We are trying to find the zero of
  //
  // f(x) = p - tcdf(x) = 0;
  //
  // So,
  //
  // x(n+1) = x(n) - f(x(n)) / f'(x(n))
  //        = x(n) + (p - tcdf(x)) / tpdf(x)
  //
  // Note that f'(x) = - tpdf(x)
  //
  double delta;
  for (unsigned int newt = 0; newt < 3; ++newt)
    {
    delta = (p - TDistribution::CDF(x, degreesOfFreedom))
      / TDistribution::PDF(x, degreesOfFreedom);
    x += delta;
    }

  
  return x;
}

double
TDistribution
::InverseCDF(double p, const ParametersType& params)
{
  if (params.GetSize() == 1)
    {
    return TDistribution::InverseCDF(p, static_cast<long>(params[0]));
    }
  else
    {
    InvalidArgumentError exp(__FILE__, __LINE__);
    ::itk::OStringStream message;
    message << "itk::ERROR: " 
            << "TDistribution: "
          << "Invalid number of parameters to describe distribution.";
    exp.SetDescription(message.str());
    exp.SetLocation(ITK_LOCATION);
    throw exp;
    }

  return 0.0;
}


double
TDistribution
::EvaluatePDF(double x) const
{
  if (m_Parameters.GetSize() == 1)
    {
    return TDistribution::PDF(x, static_cast<long>(m_Parameters[0]));
    }
  else
    {
    InvalidArgumentError exp(__FILE__, __LINE__);
    ::itk::OStringStream message;
    message << "itk::ERROR: " << this->GetNameOfClass() 
            << "(" << this << "): "
          << "Invalid number of parameters to describe distribution.";
    exp.SetDescription(message.str());
    exp.SetLocation(ITK_LOCATION);
    throw exp;
    }
  return 0.0;
}

double
TDistribution
::EvaluatePDF(double x, const ParametersType& p) const
{
  if (p.GetSize() == 1)
    {
    return TDistribution::PDF(x, static_cast<long>(p[0]));
    }
  else
    {
    InvalidArgumentError exp(__FILE__, __LINE__);
    ::itk::OStringStream message;
    message << "itk::ERROR: " << this->GetNameOfClass() 
            << "(" << this << "): "
          << "Invalid number of parameters to describe distribution.";
    exp.SetDescription(message.str());
    exp.SetLocation(ITK_LOCATION);
    throw exp;
    }
  return 0.0;
}

double
TDistribution
::EvaluatePDF(double x, long degreesOfFreedom) const
{
  return TDistribution::PDF(x, degreesOfFreedom);
}


double
TDistribution
::EvaluateCDF(double x) const
{
  if (m_Parameters.GetSize() == 1)
    {
    return TDistribution::CDF(x, static_cast<long>(m_Parameters[0]));
    }
  else
    {
    InvalidArgumentError exp(__FILE__, __LINE__);
    ::itk::OStringStream message;
    message << "itk::ERROR: " << this->GetNameOfClass() 
            << "(" << this << "): "
          << "Invalid number of parameters to describe distribution.";
    exp.SetDescription(message.str());
    exp.SetLocation(ITK_LOCATION);
    throw exp;
    }
  return 0.0;
}

double
TDistribution
::EvaluateCDF(double x, const ParametersType& p) const
{
  if (p.GetSize() == 1)
    {
    return TDistribution::CDF(x, static_cast<long>(p[0]));
    }
  else
    {
    InvalidArgumentError exp(__FILE__, __LINE__);
    ::itk::OStringStream message;
    message << "itk::ERROR: " << this->GetNameOfClass() 
            << "(" << this << "): "
          << "Invalid number of parameters to describe distribution.";
    exp.SetDescription(message.str());
    exp.SetLocation(ITK_LOCATION);
    throw exp;
    }
  return 0.0;
}

double
TDistribution
::EvaluateCDF(double x, long degreesOfFreedom) const
{
  return TDistribution::CDF(x, degreesOfFreedom);
}


double
TDistribution
::EvaluateInverseCDF(double p) const
{
  if (m_Parameters.GetSize() == 1)
    {
    return TDistribution::InverseCDF(p, static_cast<long>(m_Parameters[0]));
    }
  else
    {
    InvalidArgumentError exp(__FILE__, __LINE__);
    ::itk::OStringStream message;
    message << "itk::ERROR: " << this->GetNameOfClass() 
            << "(" << this << "): "
          << "Invalid number of parameters to describe distribution.";
    exp.SetDescription(message.str());
    exp.SetLocation(ITK_LOCATION);
    throw exp;
    }
  return 0.0;
}

double
TDistribution
::EvaluateInverseCDF(double p, const ParametersType& params) const
{
  if (params.GetSize() == 1)
    {
    return TDistribution::InverseCDF(p, static_cast<long>(params[0]));
    }
  else
    {
    InvalidArgumentError exp(__FILE__, __LINE__);
    ::itk::OStringStream message;
    message << "itk::ERROR: " << this->GetNameOfClass() 
            << "(" << this << "): "
          << "Invalid number of parameters to describe distribution.";
    exp.SetDescription(message.str());
    exp.SetLocation(ITK_LOCATION);
    throw exp;
    }
  return 0.0;
}

double
TDistribution
::EvaluateInverseCDF(double p, long degreesOfFreedom) const
{
  return TDistribution::InverseCDF(p, degreesOfFreedom);
}

bool
TDistribution
::HasVariance() const
{
  if (m_Parameters.GetSize() == 1)
    {
    if (m_Parameters[0] > 2)
      {
      return true;
      }
    }
  else
    {
    InvalidArgumentError exp(__FILE__, __LINE__);
    ::itk::OStringStream message;
    message << "itk::ERROR: " << this->GetNameOfClass() 
            << "(" << this << "): "
            << "Invalid number of parameters to describe distribution.";
    exp.SetDescription(message.str());
    exp.SetLocation(ITK_LOCATION);
    throw exp;
    }

  return false;
}

double
TDistribution
::GetMean() const
{
  return 0.0;
}

double
TDistribution
::GetVariance() const
{
  if (m_Parameters.GetSize() == 1)
    {
    if (m_Parameters[0] > 2)
      {
      double dof = static_cast<double>(m_Parameters[0]);
      
      return dof / (dof - 2.0);
      }
    else
      {
      return NumericTraits<double>::quiet_NaN();
      }
    }
  else
    {
    InvalidArgumentError exp(__FILE__, __LINE__);
    ::itk::OStringStream message;
    message << "itk::ERROR: " << this->GetNameOfClass() 
            << "(" << this << "): "
          << "Invalid number of parameters to describe distribution.";
    exp.SetDescription(message.str());
    exp.SetLocation(ITK_LOCATION);
    throw exp;
    }

  
  return NumericTraits<double>::quiet_NaN();
}

void  
TDistribution
::PrintSelf(std::ostream& os, Indent indent) const
{
  Superclass::PrintSelf(os,indent);

  if (m_Parameters.GetSize() > 0)
    {
    os << indent << "Degrees of freedom: "
       << static_cast<long>(m_Parameters[0]) << std::endl;
    }
  else
    {
    os << indent << "Degrees of freedom: (unknown)"
       << std::endl;
    }
}

} // end of namespace Statistics
} // end namespace itk

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -