⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 itkchisquaredistribution.cxx

📁 DTMK软件开发包,此为开源软件,是一款很好的医学图像开发资源.
💻 CXX
字号:
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkChiSquareDistribution.cxx,v $
  Language:  C++
  Date:      $Date: 2007-02-24 13:47:32 $
  Version:   $Revision: 1.1 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/

#include "itkChiSquareDistribution.h"
#include "itkGaussianDistribution.h"
#include "itkNumericTraits.h"
#include "vnl/vnl_math.h"
#include "vnl/vnl_erf.h"

extern "C" double dgami_(double *a, double *x);
extern "C" double dgamma_(double *x);

namespace itk { 
namespace Statistics {

ChiSquareDistribution
::ChiSquareDistribution()
{
  m_Parameters = ParametersType(1);
  m_Parameters[0] = 1.0;
}

void
ChiSquareDistribution
::SetDegreesOfFreedom(long dof)
{
  bool modified = false;

  if (m_Parameters.GetSize() > 0)
    {
    if (m_Parameters[0] != static_cast<double>(dof) )
      {
      modified = true;
      }
    }
  
  if (m_Parameters.GetSize() != 1)
    {
    m_Parameters = ParametersType(1);
    }

  m_Parameters[0] = static_cast<double>(dof);

  if (modified)
    {
    this->Modified();
    }
}

long
ChiSquareDistribution
::GetDegreesOfFreedom() const
{
  if (m_Parameters.GetSize() == 1)
    {
    return static_cast<long>(m_Parameters[0]);
    }
  else
    {
    InvalidArgumentError exp(__FILE__, __LINE__);
    ::itk::OStringStream message;
    message << "itk::ERROR: " << this->GetNameOfClass() 
            << "(" << this << "): "
          << "Invalid number of parameters to describe distribution.";
    exp.SetDescription(message.str());
    exp.SetLocation(ITK_LOCATION);
    throw exp;
    }
  
  return 1;
}

double
ChiSquareDistribution
::PDF(double x, long degreesOfFreedom)
{
  double dof = static_cast<double>(degreesOfFreedom);
  double dofon2 = 0.5*dof;
  double pdf = 0.0;

  if (x >= 0.0)
    {
    pdf = exp(-0.5*x) * pow(x, dofon2 - 1.0)
      / (pow(2.0, dofon2) * dgamma_(&dofon2));
    }
  
  return pdf;
}


double
ChiSquareDistribution
::PDF(double x, const ParametersType& p)
{
  if (p.GetSize() == 1)
    {
    return ChiSquareDistribution::PDF(x, static_cast<long>(p[0]));
    }
  else
    {
    InvalidArgumentError exp(__FILE__, __LINE__);
    ::itk::OStringStream message;
    message << "itk::ERROR: " 
            << "ChiSquareDistribution: "
          << "Invalid number of parameters to describe distribution.";
    exp.SetDescription(message.str());
    exp.SetLocation(ITK_LOCATION);
    throw exp;
    }

  return 0.0;
}

double
ChiSquareDistribution
::CDF(double x, long degreesOfFreedom)
{
  // Based on Abramowitz and Stegun 26.4.19 which relates the
  // cumulative of the chi-square to incomplete (and complete) gamma
  // function.
  if (x < 0)
    {
    return 0.0;
    }

  double dofon2 = 0.5*degreesOfFreedom;
  double xon2 = 0.5*x;
  
  return dgami_(&dofon2, &xon2) / dgamma_(&dofon2);
}


double
ChiSquareDistribution
::CDF(double x, const ParametersType& p)
{
  if (p.GetSize() == 1)
    {
    return ChiSquareDistribution::CDF(x, (long) p[0]);
    }
  else
    {
    InvalidArgumentError exp(__FILE__, __LINE__);
    ::itk::OStringStream message;
    message << "itk::ERROR: " 
            << "ChiSquareDistribution: "
          << "Invalid number of parameters to describe distribution.";
    exp.SetDescription(message.str());
    exp.SetLocation(ITK_LOCATION);
    throw exp;
    }

  return 0.0;
}

double
ChiSquareDistribution
::InverseCDF(double p, long degreesOfFreedom)
{
  if (p <= 0.0)
    {
    return itk::NumericTraits<double>::Zero;
    }
  else if (p >= 1.0)
    {
    return itk::NumericTraits<double>::max();
    }

  double x;
  double dof;
  double nx;

  // Based on Abramowitz and Stegun 26.4.17
  dof = static_cast<double>(degreesOfFreedom);
  nx = GaussianDistribution::InverseCDF(p);

  double f = 2.0 / (9.0*dof);
  x = dof*pow(1.0 - f + nx*sqrt(f), 3.0);


  // The approximation above is only accurate for large degrees of
  // freedom. We'll improve the approximation by a few Newton iterations.
  //
  //   0 iterations, error = 10^-1  at 1 degree of freedom
  //   3 iterations, error = 10^-11 at 1 degree of freedom 
  //  10 iterations, erorr = 10^-13 at 1 degree of freedom
  //  20 iterations, erorr = 10^-13 at 1 degree of freedom
  //
  //   0 iterations, error = 10^-1  at 11 degrees of freedom
  //   3 iterations, error = 10^-8  at 11 degrees of freedom 
  //  10 iterations, erorr = 10^-13 at 11 degrees of freedom
  //  20 iterations, erorr = 10^-13 at 11 degrees of freedom
  //
  //   0 iterations, error = 10^-1  at 100 degrees of freedom
  //   3 iterations, error = 10^-9  at 100 degrees of freedom 
  //  10 iterations, erorr = 10^-10 at 100 degrees of freedom
  //  20 iterations, erorr = 10^-9  at 100 degrees of freedom
  
  
  // We are trying to find the zero of
  //
  // f(x) = p - chisquarecdf(x) = 0;
  //
  // So,
  //
  // x(n+1) = x(n) - f(x(n)) / f'(x(n))
  //        = x(n) + (p - chisquarecdf(x)) / chisquarepdf(x)
  //
  // Note that f'(x) = - chisquarepdf(x)
  //
  double delta;
  for (unsigned int newt = 0; newt < 10; ++newt)
    {
    delta = (p - ChiSquareDistribution::CDF(x, degreesOfFreedom))
      / ChiSquareDistribution::PDF(x, degreesOfFreedom);
    x += delta;
    }

  return x;
}


double
ChiSquareDistribution
::InverseCDF(double p, const ParametersType& params)
{
  if (params.GetSize() == 1)
    {
    return ChiSquareDistribution::InverseCDF(p, static_cast<long>(params[0]));
    }
  else
    {
    InvalidArgumentError exp(__FILE__, __LINE__);
    ::itk::OStringStream message;
    message << "itk::ERROR: " 
            << "ChiSquareDistribution: "
          << "Invalid number of parameters to describe distribution.";
    exp.SetDescription(message.str());
    exp.SetLocation(ITK_LOCATION);
    throw exp;
    }

  return 0.0;
}

double
ChiSquareDistribution
::EvaluatePDF(double x) const
{
  if (m_Parameters.GetSize() == 1)
    {
    return ChiSquareDistribution::PDF(x, static_cast<long>(m_Parameters[0]));
    }
  else
    {
    InvalidArgumentError exp(__FILE__, __LINE__);
    ::itk::OStringStream message;
    message << "itk::ERROR: " << this->GetNameOfClass() 
            << "(" << this << "): "
          << "Invalid number of parameters to describe distribution.";
    exp.SetDescription(message.str());
    exp.SetLocation(ITK_LOCATION);
    throw exp;
    }
  return 0.0;
}

double
ChiSquareDistribution
::EvaluatePDF(double x, const ParametersType& p) const
{
  if (p.GetSize() == 1)
    {
    return ChiSquareDistribution::PDF(x, static_cast<long>(p[0]));
    }
  else
    {
    InvalidArgumentError exp(__FILE__, __LINE__);
    ::itk::OStringStream message;
    message << "itk::ERROR: " << this->GetNameOfClass() 
            << "(" << this << "): "
            << "Invalid number of parameters to describe distribution.";
    exp.SetDescription(message.str());
    exp.SetLocation(ITK_LOCATION);
    throw exp;
    }
  return 0.0;
}

double
ChiSquareDistribution
::EvaluatePDF(double x, long degreesOfFreedom) const
{
  return ChiSquareDistribution::PDF(x, degreesOfFreedom);
}


double
ChiSquareDistribution
::EvaluateCDF(double x) const
{
  if (m_Parameters.GetSize() == 1)
    {
    return ChiSquareDistribution::CDF(x, static_cast<long>(m_Parameters[0]));
    }
  else
    {
    InvalidArgumentError exp(__FILE__, __LINE__);
    ::itk::OStringStream message;
    message << "itk::ERROR: " << this->GetNameOfClass() 
            << "(" << this << "): "
          << "Invalid number of parameters to describe distribution.";
    exp.SetDescription(message.str());
    exp.SetLocation(ITK_LOCATION);
    throw exp;
    }
  return 0.0;
}

double
ChiSquareDistribution
::EvaluateCDF(double x, const ParametersType& p) const
{
  if (p.GetSize() == 1)
    {
    return ChiSquareDistribution::CDF(x, static_cast<long>(p[0]));
    }
  else
    {
    InvalidArgumentError exp(__FILE__, __LINE__);
    ::itk::OStringStream message;
    message << "itk::ERROR: " << this->GetNameOfClass() 
            << "(" << this << "): "
          << "Invalid number of parameters to describe distribution.";
    exp.SetDescription(message.str());
    exp.SetLocation(ITK_LOCATION);
    throw exp;
    }
  return 0.0;
}

double
ChiSquareDistribution
::EvaluateCDF(double x, long degreesOfFreedom) const
{
  return ChiSquareDistribution::CDF(x, degreesOfFreedom);
}


double
ChiSquareDistribution
::EvaluateInverseCDF(double p) const
{
  if (m_Parameters.GetSize() == 1)
    {
    return ChiSquareDistribution::InverseCDF(p,
                                           static_cast<long>(m_Parameters[0]));
    }
  else
    {
    InvalidArgumentError exp(__FILE__, __LINE__);
    ::itk::OStringStream message;
    message << "itk::ERROR: " << this->GetNameOfClass() 
            << "(" << this << "): "
          << "Invalid number of parameters to describe distribution.";
    exp.SetDescription(message.str());
    exp.SetLocation(ITK_LOCATION);
    throw exp;
    }
  return 0.0;
}

double
ChiSquareDistribution
::EvaluateInverseCDF(double p, const ParametersType& params) const
{
  if (params.GetSize() == 1)
    {
    return ChiSquareDistribution::InverseCDF(p, static_cast<long>(params[0]));
    }
  else
    {
    InvalidArgumentError exp(__FILE__, __LINE__);
    ::itk::OStringStream message;
    message << "itk::ERROR: " << this->GetNameOfClass() 
            << "(" << this << "): "
          << "Invalid number of parameters to describe distribution.";
    exp.SetDescription(message.str());
    exp.SetLocation(ITK_LOCATION);
    throw exp;
    }
  return 0.0;
}

double
ChiSquareDistribution
::EvaluateInverseCDF(double p, long degreesOfFreedom) const
{
  return ChiSquareDistribution::InverseCDF(p, degreesOfFreedom);
}


double
ChiSquareDistribution
::GetMean() const
{
  if (m_Parameters.GetSize() == 1)
    {
    return m_Parameters[0];
    }
  else
    {
    InvalidArgumentError exp(__FILE__, __LINE__);
    ::itk::OStringStream message;
    message << "itk::ERROR: " << this->GetNameOfClass() 
            << "(" << this << "): "
            << "Invalid number of parameters to describe distribution.";
    exp.SetDescription(message.str());
    exp.SetLocation(ITK_LOCATION);
    throw exp;
    }

  return NumericTraits<double>::quiet_NaN();
}

double
ChiSquareDistribution
::GetVariance() const
{
  if (m_Parameters.GetSize() == 1)
    {
    return 2.0*m_Parameters[0];
    }
  else
    {
    InvalidArgumentError exp(__FILE__, __LINE__);
    ::itk::OStringStream message;
    message << "itk::ERROR: " << this->GetNameOfClass() 
            << "(" << this << "): "
            << "Invalid number of parameters to describe distribution.";
    exp.SetDescription(message.str());
    exp.SetLocation(ITK_LOCATION);
    throw exp;
    }

  return NumericTraits<double>::quiet_NaN();
}

void  
ChiSquareDistribution
::PrintSelf(std::ostream& os, Indent indent) const
{
  Superclass::PrintSelf(os,indent);

  if (m_Parameters.GetSize() > 0)
    {
    os << indent << "Degrees of freedom: "
       << static_cast<long>(m_Parameters[0]) << std::endl;
    }
  else
    {
    os << indent << "Degrees of freedom: (unknown)"
       << std::endl;
    }
}

} // end of namespace Statistics
} // end namespace itk

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -