⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 itkgaussianmixturemodelcomponent.txx

📁 DTMK软件开发包,此为开源软件,是一款很好的医学图像开发资源.
💻 TXX
字号:
/*=========================================================================

Program:   Insight Segmentation & Registration Toolkit
Module:    $RCSfile: itkGaussianMixtureModelComponent.txx,v $
Language:  C++
Date:      $Date: 2006-03-19 04:37:20 $
Version:   $Revision: 1.16 $

Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

This software is distributed WITHOUT ANY WARRANTY; without even 
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
PURPOSE.  See the above copyright notices for more information.

=========================================================================*/

#ifndef __itkGaussianMixtureModelComponent_txx
#define __itkGaussianMixtureModelComponent_txx

#include <iostream>

#include "itkGaussianMixtureModelComponent.h"

namespace itk{ 
namespace Statistics{
  
template< class TSample >
GaussianMixtureModelComponent< TSample >
::GaussianMixtureModelComponent()
{
  m_MeanEstimator = MeanEstimatorType::New() ;
  m_CovarianceEstimator = CovarianceEstimatorType::New() ;
  m_GaussianDensityFunction = NativeMembershipFunctionType::New() ;
  this->SetMembershipFunction((MembershipFunctionType*)
                              m_GaussianDensityFunction.GetPointer()) ;
}

template< class TSample >
void
GaussianMixtureModelComponent< TSample >
::PrintSelf(std::ostream& os, Indent indent) const
{
  Superclass::PrintSelf(os, indent) ;

  os << indent << "Mean: " << m_Mean << std::endl ;
  os << indent << "Covariance: " << m_Covariance << std::endl ;
  os << indent << "Mean Estimator: " << m_MeanEstimator << std::endl ;
  os << indent << "Covariance Estimator: " << m_CovarianceEstimator << std::endl ;
  os << indent << "GaussianDensityFunction: " << m_GaussianDensityFunction << std::endl ;
}

template< class TSample >
void
GaussianMixtureModelComponent< TSample >
::SetSample(const TSample* sample)
{
  Superclass::SetSample(sample) ;

  m_MeanEstimator->SetInputSample(sample) ;
  m_CovarianceEstimator->SetInputSample(sample) ;

  WeightArrayType* weights = this->GetWeights() ;
  m_MeanEstimator->SetWeights(weights) ;
  m_CovarianceEstimator->SetWeights(weights) ;
  const MeasurementVectorSizeType measurementVectorLength = 
            sample->GetMeasurementVectorSize();
  m_GaussianDensityFunction->SetMeasurementVectorSize( 
                                    measurementVectorLength );
  MeasurementVectorTraits::SetLength( m_Mean, measurementVectorLength );
  m_Covariance.SetSize( measurementVectorLength, measurementVectorLength );
  m_Mean.Fill(NumericTraits< double >::NonpositiveMin()) ;
  m_Covariance.Fill(NumericTraits< double >::NonpositiveMin()) ;
  m_CovarianceEstimator->SetMean(&m_Mean) ;
  m_GaussianDensityFunction->SetMean(&m_Mean) ;
}

template< class TSample >
void
GaussianMixtureModelComponent< TSample >
::SetParameters(const ParametersType &parameters)
{
  Superclass::SetParameters(parameters) ;

  unsigned int paramIndex = 0 ;
  unsigned int i, j ;

  bool changed = false ;

  MeasurementVectorSizeType measurementVectorSize = 
          this->GetSample()->GetMeasurementVectorSize();

  for ( i = 0 ; i < measurementVectorSize ; i++)
    {
    if ( m_Mean[i] != parameters[paramIndex] )
      {
      m_Mean[i] = parameters[paramIndex] ;
      changed = true ;
      }
    ++paramIndex ;
    }

  for ( i = 0 ; i < measurementVectorSize ; i++ )
    {
    for ( j = 0 ; j < measurementVectorSize; j++ )
      {
      if ( m_Covariance.GetVnlMatrix().get(i, j) != 
           parameters[paramIndex] )
        {
        m_Covariance.GetVnlMatrix().put(i, j, parameters[paramIndex]) ;
        changed = true ;
        }
      ++paramIndex ;
      }
    }
  m_GaussianDensityFunction->SetCovariance(&m_Covariance) ;
  this->AreParametersModified(changed) ;
}


template< class TSample >
double
GaussianMixtureModelComponent< TSample >
::CalculateParametersChange()
{
  unsigned int i, j ;

  MeanType meanEstimate = *(m_MeanEstimator->GetOutput()) ;
  CovarianceType covEstimate = *(m_CovarianceEstimator->GetOutput()) ;

  double temp ;
  double changes = 0.0 ;
  MeasurementVectorSizeType measurementVectorSize = 
          this->GetSample()->GetMeasurementVectorSize();
  
  for ( i = 0 ; i < measurementVectorSize ; i++)
    {
    temp = m_Mean[i] - meanEstimate[i] ;
    changes += temp * temp ;
    }

  for ( i = 0 ; i < measurementVectorSize ; i++ )
    {
    for ( j = 0 ; j < measurementVectorSize ; j++ )
      {
      temp = m_Covariance.GetVnlMatrix().get(i, j) - 
        covEstimate.GetVnlMatrix().get(i, j) ;
      changes += temp * temp ;
      }
    }

  changes = vcl_sqrt(changes) ;
  return changes ;
}

template< class TSample >
void
GaussianMixtureModelComponent< TSample >
::GenerateData()
{
  MeasurementVectorSizeType measurementVectorSize = 
          this->GetSample()->GetMeasurementVectorSize();
  
  this->AreParametersModified(false) ;

  m_MeanEstimator->Update() ;

  unsigned int i, j ;
  double temp ;
  double changes ;
  bool changed = false ;
  ParametersType parameters = this->GetFullParameters() ;
  int paramIndex  = 0 ;

  MeanType meanEstimate = *(m_MeanEstimator->GetOutput()) ;
  for ( i = 0 ; i < measurementVectorSize ; i++)
    {
    temp = m_Mean[i] - meanEstimate[i] ;
    changes = temp * temp ;
    changes = vcl_sqrt(changes) ;
    if ( changes > this->GetMinimalParametersChange() )
      {
      changed = true ;
      }
    }


  if ( changed )
    {
    m_Mean = *(m_MeanEstimator->GetOutput()) ;
    for ( i = 0 ; i < measurementVectorSize ; i++)
      {
      parameters[paramIndex] = meanEstimate[i];
      ++paramIndex ;
      }
    this->AreParametersModified(true) ;
    }
  else
    {
    paramIndex = measurementVectorSize ;
    }

  m_CovarianceEstimator->Update() ;
  CovarianceType covEstimate = *(m_CovarianceEstimator->GetOutput()) ;
  changed = false ;
  for ( i = 0 ; i < measurementVectorSize ; i++ )
    {
    for ( j = 0 ; j < measurementVectorSize ; j++ )
      {
      temp = m_Covariance.GetVnlMatrix().get(i, j) - 
        covEstimate.GetVnlMatrix().get(i, j) ;
      changes = temp * temp ;
      changes = vcl_sqrt(changes) ;
      if ( changes > this->GetMinimalParametersChange() )
        {
        changed = true ;
        }
      }
    }
  
  if ( changed )
    {
    m_Covariance = *(m_CovarianceEstimator->GetOutput()) ;
    for ( i = 0 ; i < measurementVectorSize ; i++ )
      {
      for ( j = 0 ; j < measurementVectorSize ; j++ )
        {
        parameters[paramIndex] = covEstimate.GetVnlMatrix().get(i, j) ;
        ++paramIndex ;
        }
      }
    this->AreParametersModified(true) ;
    }

  Superclass::SetParameters(parameters) ;
}
    
} // end of namespace Statistics 
} // end of namespace itk 

#endif



⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -