📄 itkweightedcovariancecalculator.txx
字号:
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkWeightedCovarianceCalculator.txx,v $
Language: C++
Date: $Date: 2008-06-30 15:34:59 $
Version: $Revision: 1.15 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkWeightedCovarianceCalculator_txx
#define __itkWeightedCovarianceCalculator_txx
#include "itkWeightedCovarianceCalculator.h"
namespace itk{
namespace Statistics{
template< class TSample >
WeightedCovarianceCalculator< TSample >
::WeightedCovarianceCalculator()
{
m_Output = new OutputType();
m_WeightFunction = 0;
m_Weights = 0;
m_Mean = 0;
m_InternalMean = 0;
}
template< class TSample >
WeightedCovarianceCalculator< TSample >
::~WeightedCovarianceCalculator()
{
if ( m_InternalMean != 0 )
{
delete m_InternalMean;
m_InternalMean = 0;
m_Mean = 0;
}
delete m_Output;
m_Output = 0;
}
template< class TSample >
void
WeightedCovarianceCalculator< TSample >
::SetMean(MeanType* mean)
{
const MeasurementVectorSizeType measurementVectorSize =
this->GetMeasurementVectorSize();
if ( m_InternalMean != mean && m_InternalMean != 0 )
{
delete m_InternalMean;
m_InternalMean = 0;
}
if( mean )
{
const MeasurementVectorSizeType measurementVectorLength =
MeasurementVectorTraits::Assert( mean, measurementVectorSize,
"Length mismatch: CovarianceCalculator::SetMean" );
if( measurementVectorLength )
{ this->SetMeasurementVectorSize( measurementVectorLength ); }
}
m_Mean = mean;
}
template< class TSample >
typename WeightedCovarianceCalculator< TSample >::MeanType*
WeightedCovarianceCalculator< TSample >
::GetMean( void )
{
if ( m_InternalMean != 0 )
{
return m_InternalMean;
}
else
{
return m_Mean;
}
}
template< class TSample >
void
WeightedCovarianceCalculator< TSample >
::SetWeights(WeightArrayType* array)
{
m_Weights = array;
}
template< class TSample >
typename WeightedCovarianceCalculator< TSample >::WeightArrayType*
WeightedCovarianceCalculator< TSample >
::GetWeights( void )
{
return m_Weights;
}
template< class TSample >
void
WeightedCovarianceCalculator< TSample >
::SetWeightFunction(WeightFunctionType* func)
{
m_WeightFunction = func;
}
template< class TSample >
typename WeightedCovarianceCalculator< TSample >::WeightFunctionType*
WeightedCovarianceCalculator< TSample >
::GetWeightFunction( void )
{
return m_WeightFunction;
}
template< class TSample >
void
WeightedCovarianceCalculator< TSample >
::ComputeCovarianceWithGivenMean( void )
{
// Assert at run time that the given mean has the same length as
// measurement vectors in the sample and that the size is non-zero.
MeasurementVectorTraits::Assert( m_Mean, this->GetMeasurementVectorSize(),
"Length mismatch: CovarianceCalculator::ComputeCovarianceWithGivenMean");
const MeasurementVectorSizeType measurementVectorSize =
this->GetMeasurementVectorSize();
delete m_Output;
m_Output = new OutputType();
m_Output->SetSize( measurementVectorSize, measurementVectorSize );
m_Output->Fill(0.0);
double weight;
double sumWeight = 0.0;
double sumSquaredWeight = 0.0;
unsigned int row, col;
unsigned int i;
typename TSample::ConstIterator iter = this->GetInputSample()->Begin();
typename TSample::ConstIterator end = this->GetInputSample()->End();
MeanType diff( measurementVectorSize );
typename TSample::MeasurementVectorType measurements;
int measurementVectorIndex = 0;
// fills the lower triangle and the diagonal cells in the covariance matrix
if (m_WeightFunction != 0)
{
while (iter != end)
{
measurements = iter.GetMeasurementVector();
weight = iter.GetFrequency() * m_WeightFunction->Evaluate(measurements);
sumWeight += weight;
sumSquaredWeight += weight * weight;
for (i = 0; i < measurementVectorSize; i++)
{
diff[i] = measurements[i] - (*m_Mean)[i];
}
for ( row = 0; row < measurementVectorSize; row++)
{
for ( col = 0; col < row + 1; col++)
{
(*m_Output)(row,col) +=
weight * diff[row] * diff[col];
}
}
++iter;
}
}
else
{
while (iter != end)
{
measurements = iter.GetMeasurementVector();
weight = iter.GetFrequency() * (*m_Weights)[measurementVectorIndex];
sumWeight += weight;
sumSquaredWeight += weight * weight;
for (i = 0; i < measurementVectorSize; i++)
{
diff[i] = measurements[i] - (*m_Mean)[i];
}
for ( row = 0; row < measurementVectorSize; row++)
{
for ( col = 0; col < row + 1; col++)
{
(*m_Output)(row,col) +=
weight * diff[row] * diff[col];
}
}
++measurementVectorIndex;
++iter;
} // end of while
} // end of if-else
// fills the upper triangle using the lower triangle
for (row = 1; row < measurementVectorSize; row++)
{
for (col = 0; col < row; col++)
{
(*m_Output)(col, row) =
(*m_Output)(row, col);
}
}
double denom = sumWeight - ( sumSquaredWeight / sumWeight );
if ( denom > 1e-6 || denom < -1e-6 )
{
(*m_Output) /= denom;
}
else
{
m_Output->Fill( 0.0 );
}
}
template< class TSample >
void
WeightedCovarianceCalculator< TSample >
::ComputeCovarianceWithoutGivenMean( void )
{
const MeasurementVectorSizeType measurementVectorSize =
this->GetMeasurementVectorSize();
delete m_Output;
m_Output = new OutputType();
m_Output->SetSize( measurementVectorSize, measurementVectorSize );
m_Output->Fill(0.0);
m_InternalMean = new MeanType(measurementVectorSize);
m_InternalMean->Fill(0.0);
double weight;
double tempWeight;
double sumWeight = 0.0;
double sumSquaredWeight = 0.0;
unsigned int row, col;
unsigned int i;
typename TSample::ConstIterator iter = this->GetInputSample()->Begin();
typename TSample::ConstIterator end = this->GetInputSample()->End();
MeanType diff( measurementVectorSize );
typename TSample::MeasurementVectorType measurements;
int measurementVectorIndex = 0;
// fills the lower triangle and the diagonal cells in the covariance matrix
if (m_WeightFunction != 0)
{
while (iter != end)
{
measurements = iter.GetMeasurementVector();
weight =
iter.GetFrequency() * m_WeightFunction->Evaluate(measurements);
if ( weight == 0 )
{
++iter;
continue;
}
sumWeight += weight;
sumSquaredWeight += weight * weight;
for (i = 0; i < measurementVectorSize; i++)
{
diff[i] = measurements[i] - (*m_InternalMean)[i];
}
// updates the mean vector
tempWeight = weight / sumWeight;
for ( i = 0; i < measurementVectorSize; ++i )
{
(*m_InternalMean)[i] += tempWeight * diff[i];
}
tempWeight = tempWeight * ( sumWeight - weight );
for ( row = 0; row < measurementVectorSize; row++)
{
for ( col = 0; col < row + 1; col++)
{
(*m_Output)(row,col) +=
tempWeight * diff[row] * diff[col];
}
}
++iter;
}
}
else
{
while (iter != end)
{
weight = iter.GetFrequency() * (*m_Weights)[measurementVectorIndex];
if ( weight == 0 )
{
++iter;
continue;
}
sumWeight += weight;
measurements = iter.GetMeasurementVector();
sumSquaredWeight += weight * weight;
for (i = 0; i < measurementVectorSize; i++)
{
diff[i] = measurements[i] - (*m_InternalMean)[i];
}
// updates the mean vector
tempWeight = weight / sumWeight;
for ( i = 0; i < measurementVectorSize; ++i )
{
(*m_InternalMean)[i] += tempWeight * diff[i];
}
tempWeight = tempWeight * ( sumWeight - weight );
for ( row = 0; row < measurementVectorSize; row++)
{
for ( col = 0; col < row + 1; col++)
{
(*m_Output)(row,col) +=
tempWeight * diff[row] * diff[col];
}
}
++measurementVectorIndex;
++iter;
}
}
// fills the upper triangle using the lower triangle
for (row = 1; row < measurementVectorSize; row++)
{
for (col = 0; col < row; col++)
{
(*m_Output)(col, row) =
(*m_Output)(row, col);
}
}
double denom = sumWeight - ( sumSquaredWeight / sumWeight );
if ( denom > 1e-6 || denom < -1e-6 )
{
(*m_Output) /= denom;
}
else
{
m_Output->Fill( 0.0 );
}
}
template< class TSample >
void
WeightedCovarianceCalculator< TSample >
::GenerateData( void )
{
const MeasurementVectorSizeType measurementVectorSize =
this->GetMeasurementVectorSize();
if( measurementVectorSize == 0 )
{
itkExceptionMacro( << "Measurement vector size must be set. Use SetMeasurementVectorSize( .. )");
}
if ( m_Mean == 0 )
{
this->ComputeCovarianceWithoutGivenMean();
}
else
{
this->ComputeCovarianceWithGivenMean();
}
}
template< class TSample >
typename WeightedCovarianceCalculator< TSample >::OutputType*
WeightedCovarianceCalculator< TSample >
::GetOutput( void )
{
return m_Output;
}
template< class TSample >
void
WeightedCovarianceCalculator< TSample >
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os,indent);
os << indent << "Output: " << m_Output << std::endl;
os << indent << "Weights: " << m_Weights << std::endl;
if ( m_Mean != 0)
{
os << indent << "Mean: [" << *m_Mean << "]" << std::endl;
}
else
{
os << indent << "Mean: not set" << std::endl;
}
if ( m_InternalMean != 0)
{
os << indent << "Internal Mean: [" << *m_InternalMean << "]" << std::endl;
}
else
{
os << indent << "Internal Mean: not used" << std::endl;
}
}
} // end of namespace Statistics
} // end of namespace itk
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -