📄 itkmultilayerneuralnetworkbase.txx
字号:
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkMultilayerNeuralNetworkBase.txx,v $
Language: C++
Date: $Date: 2007-08-30 18:23:05 $
Version: $Revision: 1.11 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __MultiLayerNeuralNetworkBase_txx
#define __MultiLayerNeuralNetworkBase_txx
#include "itkMultilayerNeuralNetworkBase.h"
#include "itkErrorBackPropagationLearningFunctionBase.h"
#include "itkErrorBackPropagationLearningWithMomentum.h"
#include "itkQuickPropLearningRule.h"
namespace itk
{
namespace Statistics
{
template<class TMeasurementVector, class TTargetVector,class TLearningLayer>
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::MultilayerNeuralNetworkBase()
{
typedef ErrorBackPropagationLearningWithMomentum<TLearningLayer,TTargetVector> DefaultLearningFunctionType;
m_LearningFunction = DefaultLearningFunctionType::New();
m_LearningRate = 0.001;
//#define __USE_OLD_INTERFACE Comment out to ensure that new interface works
#ifdef __USE_OLD_INTERFACE
m_NumOfLayers = 0;
m_NumOfWeightSets=0;
#endif
}
template<class TMeasurementVector, class TTargetVector,class TLearningLayer>
void
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::SetLearningRate(ValueType lr)
{
m_LearningRate=lr;
this->Modified();
}
template<class TMeasurementVector, class TTargetVector,class TLearningLayer>
void
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::SetLearningFunction(LearningFunctionInterfaceType* f)
{
m_LearningFunction=f;
this->Modified();
}
template<class TMeasurementVector, class TTargetVector,class TLearningLayer>
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::~MultilayerNeuralNetworkBase()
{
}
template<class TMeasurementVector, class TTargetVector,class TLearningLayer>
void
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::AddLayer(LayerInterfaceType* layer)
{
//Automatically set the layer Id based on position in the layer vector.
layer->SetLayerId(m_Layers.size());
m_Layers.push_back(layer);
//#define __USE_OLD_INTERFACE Comment out to ensure that new interface works
#ifdef __USE_OLD_INTERFACE
m_NumOfLayers++;
#endif
}
template<class TMeasurementVector, class TTargetVector,class TLearningLayer>
typename MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>::LayerInterfaceType*
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::GetLayer(int layer_id)
{
return m_Layers[layer_id].GetPointer();
}
template<class TMeasurementVector, class TTargetVector,class TLearningLayer>
const typename MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>::LayerInterfaceType*
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::GetLayer(int layer_id) const
{
return m_Layers[layer_id].GetPointer();
}
template<class TMeasurementVector, class TTargetVector,class TLearningLayer>
typename MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>::NetworkOutputType
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::GenerateOutput(TMeasurementVector samplevector)
{
this->m_Layers[0]->ForwardPropagate(samplevector);
unsigned int i;
for (i = 0; i < this->m_Layers.size() && i < this->m_Weights.size(); i++)
{
this->m_Weights[i]->ForwardPropagate(
this->m_Layers[i]->GetOutputVector() );
this->m_Layers[i + 1]->ForwardPropagate();
}
NetworkOutputType temp_output;
temp_output.SetSize(this->m_Layers[i]->GetNumberOfNodes());
for(unsigned int k=0; k<temp_output.Size(); k++)
{
temp_output[k]=this->m_Layers[i]->GetOutputVector()[k];
}
return temp_output;
}
template<class TMeasurementVector, class TTargetVector,class TLearningLayer>
void
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::BackwardPropagate(NetworkOutputType errors)
{
unsigned int i = this->m_Layers.size();
i--;
this->m_Layers[i]->BackwardPropagate(errors);
i--;
while (i > 0)
{
this->m_Layers[i]->BackwardPropagate();
i--;
}
}
template<class TMeasurementVector, class TTargetVector,class TLearningLayer>
void
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::InitializeWeights()
{
unsigned int num_wts = this->m_Weights.size();
for(unsigned int i=0; i<num_wts; i++)
{
this->m_Weights[i]->InitializeWeights();
}
}
template<class TMeasurementVector, class TTargetVector,class TLearningLayer>
void
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::UpdateWeights(ValueType itkNotUsed(lr))
{
unsigned int i = this->m_Layers.size();
while(i>1)
{
i--;
m_LearningFunction->Learn(this->m_Layers[i],m_LearningRate);
this->m_Layers[i]->GetInputWeightSet()->UpdateWeights(m_LearningRate);
}
}
template<class TMeasurementVector, class TTargetVector,class TLearningLayer>
void
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::AddWeightSet(typename LayerInterfaceType::WeightSetInterfaceType* weightset)
{
weightset->SetWeightSetId(m_Weights.size());
m_Weights.push_back(weightset);
//#define __USE_OLD_INTERFACE Comment out to ensure that new interface works
#ifdef __USE_OLD_INTERFACE
m_NumOfWeightSets++;
#endif
}
#ifdef __USE_OLD_INTERFACE
//Moved definition to header in attempt to fix compiler issues on MS Express 5.0 compiler.
template<class TMeasurementVector, class TTargetVector,class TLearningLayer>
typename MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>::LayerInterfaceType::WeightSetInterfaceType*
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::GetWeightSet(unsigned int id)
{
return m_Weights[id].GetPointer();
}
#endif
#ifdef __USE_OLD_INTERFACE
template<class TMeasurementVector, class TTargetVector,class TLearningLayer>
const typename MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>::LayerInterfaceType::WeightSetInterfaceType*
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::GetWeightSet(unsigned int id) const
{
return m_Weights[id].GetPointer();
}
#endif
template<class TMeasurementVector, class TTargetVector,class TLearningLayer>
void
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::SetLearningRule(LearningFunctionInterfaceType* l)
{
m_LearningFunction = l;
this->Modified();
}
/** Print the object */
template<class TMeasurementVector, class TTargetVector,class TLearningLayer>
void
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::PrintSelf( std::ostream& os, Indent indent ) const
{
os << indent << "MultilayerNeuralNetworkBase(" << this << ")" << std::endl;
Superclass::PrintSelf( os, indent );
//os << indent << "m_Layers = " << m_Layers << std::endl;
//os << indent << "m_Weights = " << m_Weights << std::endl;
if(m_LearningFunction)
{
os << indent << "m_LearningFunction = " << m_LearningFunction << std::endl;
}
os << indent << "m_LearningRate = " << m_LearningRate << std::endl;
os << indent << "NumOfLayers = " << m_Layers.size() << std::endl;
os << indent << "NumOfWeightSets = " << m_Weights.size() << std::endl;
}
} // end namespace Statistics
} // end namespace itk
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -