📄 itksamplemeanshiftclusteringfiltertest.cxx
字号:
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkSampleMeanShiftClusteringFilterTest.cxx,v $
Language: C++
Date: $Date: 2005-02-08 03:18:41 $
Version: $Revision: 1.5 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#include "itkImageFileReader.h"
#include "itkImageRegionIterator.h"
#include "itkScalarImageToListAdaptor.h"
#include "itkKdTree.h"
#include "itkKdTreeGenerator.h"
#include "itkMeanShiftModeCacheMethod.h"
#include "itkHypersphereKernelMeanShiftModeSeeker.h"
#include "itkSampleMeanShiftBlurringFilter.h"
#include "itkSampleMeanShiftClusteringFilter.h"
#include "itkImageFileWriter.h"
int itkSampleMeanShiftClusteringFilterTest(int argc, char* argv[] )
{
std::cout << "SampleMeanShiftClusteringFilter Test \n \n";
if (argc < 2)
{
std::cout << "ERROR: data file name argument missing."
<< std::endl ;
return EXIT_FAILURE;
}
bool saveClusteredImage = false ;
typedef unsigned char PixelType ;
typedef itk::Image< PixelType, 2 > ImageType ;
typedef itk::ImageFileReader< ImageType > ImageReaderType ;
ImageReaderType::Pointer imageReader = ImageReaderType::New() ;
imageReader->SetFileName( argv[1] ) ;
imageReader->Update() ;
ImageType::Pointer image = imageReader->GetOutput() ;
typedef itk::Statistics::ScalarImageToListAdaptor< ImageType >
ListSampleType ;
ListSampleType::Pointer listSample =
ListSampleType::New() ;
listSample->SetImage( image ) ;
typedef itk::Statistics::KdTreeGenerator< ListSampleType >
TreeGeneratorType ;
TreeGeneratorType::Pointer treeGenerator = TreeGeneratorType::New() ;
treeGenerator->SetSample( listSample ) ;
treeGenerator->SetBucketSize( 200 ) ;
treeGenerator->Update() ;
typedef TreeGeneratorType::KdTreeType TreeType ;
TreeType::Pointer tree = treeGenerator->GetOutput() ;
typedef itk::Statistics::HypersphereKernelMeanShiftModeSeeker<
TreeType > ModeSeekerType ;
ModeSeekerType::Pointer modeSeeker = ModeSeekerType::New() ;
modeSeeker->SetInputSample( tree ) ;
// modeSeeker->SetInputSample( listSample ) ;
modeSeeker->SetSearchRadius( 4.0 ) ;
typedef itk::Statistics::MeanShiftModeCacheMethod< TreeType::MeasurementVectorType > CacheMethodType ;
CacheMethodType::Pointer cacheMethod = CacheMethodType::New() ;
cacheMethod->SetMaximumEntries(255) ;
cacheMethod->SetMaximumConsecutiveFailures(100) ;
cacheMethod->SetHitRatioThreshold( 0.5 ) ;
modeSeeker->SetCacheMethod( cacheMethod.GetPointer() ) ;
typedef itk::Statistics::SampleMeanShiftBlurringFilter< TreeType >
FilterType ;
FilterType::Pointer filter = FilterType::New() ;
filter->SetInputSample( tree ) ;
filter->SetMeanShiftModeSeeker( modeSeeker ) ;
try
{
filter->Update() ;
}
catch ( ... )
{
std::cout << "Test failed. - blurring proces" << std::endl;
return EXIT_FAILURE;
}
std::cout << "Cache statistics: " << std::endl ;
cacheMethod->Print(std::cout) ;
typedef ImageType OutputImageType ;
OutputImageType::Pointer outputImage = OutputImageType::New() ;
outputImage->SetRegions( image->GetLargestPossibleRegion() ) ;
outputImage->Allocate() ;
typedef itk::ImageRegionIterator< OutputImageType > ImageIteratorType ;
ImageIteratorType io_iter( outputImage,
outputImage->GetLargestPossibleRegion() ) ;
io_iter.GoToBegin() ;
FilterType::OutputType::Pointer output = filter->GetOutput() ;
FilterType::OutputType::Iterator fo_iter = output->Begin() ;
FilterType::OutputType::Iterator fo_end = output->End() ;
while ( fo_iter != fo_end )
{
io_iter.Set( (PixelType) fo_iter.GetMeasurementVector()[0]) ;
++fo_iter ;
++io_iter ;
}
ListSampleType::Pointer listSample2 = ListSampleType::New() ;
listSample2->SetImage( outputImage ) ;
TreeGeneratorType::Pointer treeGenerator2 = TreeGeneratorType::New() ;
treeGenerator2->SetSample( listSample2 ) ;
treeGenerator2->SetBucketSize( 200 ) ;
treeGenerator2->Update() ;
typedef itk::Statistics::SampleMeanShiftClusteringFilter< TreeType >
ClusteringMethodType ;
ClusteringMethodType::Pointer clusteringMethod =
ClusteringMethodType::New() ;
clusteringMethod->SetInputSample( treeGenerator2->GetOutput() ) ;
clusteringMethod->SetThreshold( 0.5 ) ;
clusteringMethod->SetMinimumClusterSize( 16 ) ;
clusteringMethod->DebugOn() ;
try
{
clusteringMethod->Update() ;
}
catch ( ... )
{
std::cout << "Test failed. - clustering proces" << std::endl;
return EXIT_FAILURE;
}
if ( saveClusteredImage )
{
OutputImageType::Pointer clusterMap = OutputImageType::New() ;
clusterMap->SetRegions( image->GetLargestPossibleRegion() ) ;
clusterMap->Allocate() ;
ImageIteratorType m_iter( clusterMap,
clusterMap->GetLargestPossibleRegion() ) ;
m_iter.GoToBegin() ;
ClusteringMethodType::ClusterLabelsType clusterLabels =
clusteringMethod->GetOutput() ;
ClusteringMethodType::ClusterLabelsType::iterator co_iter =
clusterLabels.begin() ;
while ( co_iter != clusterLabels.end() )
{
m_iter.Set( (PixelType) *co_iter ) ;
++co_iter ;
++m_iter ;
}
typedef itk::ImageFileWriter< OutputImageType > ImageWriterType ;
ImageWriterType::Pointer map_writer = ImageWriterType::New() ;
map_writer->SetFileName("clustered_sf4.png") ;
map_writer->SetInput( clusterMap ) ;
map_writer->Update() ;
}
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -