📄 itkconjugategradientoptimizertest.cxx
字号:
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkConjugateGradientOptimizerTest.cxx,v $
Language: C++
Date: $Date: 2008-05-26 00:50:23 $
Version: $Revision: 1.24 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#include <itkConjugateGradientOptimizer.h>
#include <vnl/vnl_math.h>
#include <cstdlib>
/**
* The objectif function is the quadratic form:
*
* 1/2 x^T A x - b^T x
*
* Where A is represented as an itkMatrix and
* b is represented as a itkVector
*
* The system in this example is:
*
* | 3 2 ||x| | 2| |0|
* | 2 6 ||y| + |-8| = |0|
*
*
* the solution is the vector | 2 -2 |
*
*/
class conjugateCostFunction : public itk::SingleValuedCostFunction
{
public:
typedef conjugateCostFunction Self;
typedef itk::SingleValuedCostFunction Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
itkNewMacro( Self );
itkTypeMacro( conjugateCostFunction, SingleValuedCostFunction );
enum { SpaceDimension=2 };
typedef Superclass::ParametersType ParametersType;
typedef Superclass::DerivativeType DerivativeType;
typedef vnl_vector<double> VectorType;
typedef vnl_matrix<double> MatrixType;
typedef double MeasureType ;
conjugateCostFunction()
{
}
double GetValue( const ParametersType & position ) const
{
double x = position[0];
double y = position[1];
std::cout << "GetValue ( " ;
std::cout << x << " , " << y;
std::cout << ") = ";
double val = 0.5*(3*x*x+4*x*y+6*y*y) - 2*x + 8*y;
std::cout << val << std::endl;
return val;
}
void GetDerivative( const ParametersType & position,
DerivativeType & derivative ) const
{
double x = position[0];
double y = position[1];
std::cout << "GetDerivative ( " ;
std::cout << x << " , " << y;
std::cout << ") = ";
derivative = DerivativeType(SpaceDimension);
derivative[0] = 3*x + 2*y -2;
derivative[1] = 2*x + 6*y +8;
std::cout << "(" ;
std::cout << derivative[0] <<" , ";
std::cout << derivative[1] << ")" << std::endl;
}
unsigned int GetNumberOfParameters(void) const
{
return SpaceDimension;
}
private:
};
class CommandIterationUpdateConjugateGradient : public itk::Command
{
public:
typedef CommandIterationUpdateConjugateGradient Self;
typedef itk::Command Superclass;
typedef itk::SmartPointer<Self> Pointer;
itkNewMacro( Self );
protected:
CommandIterationUpdateConjugateGradient()
{
m_IterationNumber=0;
}
public:
typedef itk::ConjugateGradientOptimizer OptimizerType;
typedef const OptimizerType * OptimizerPointer;
void Execute(itk::Object *caller, const itk::EventObject & event)
{
Execute( (const itk::Object *)caller, event);
}
void Execute(const itk::Object * object, const itk::EventObject & event)
{
OptimizerPointer optimizer =
dynamic_cast< OptimizerPointer >( object );
if( m_FunctionEvent.CheckEvent( &event ) )
{
std::cout << m_IterationNumber++ << " ";
std::cout << optimizer->GetCachedValue() << " ";
std::cout << optimizer->GetCachedCurrentPosition() << std::endl;
}
else if( m_GradientEvent.CheckEvent( &event ) )
{
std::cout << "Gradient " << optimizer->GetCachedDerivative() << " ";
}
}
private:
unsigned long m_IterationNumber;
itk::FunctionEvaluationIterationEvent m_FunctionEvent;
itk::GradientEvaluationIterationEvent m_GradientEvent;
};
int itkConjugateGradientOptimizerTest(int, char* [] )
{
std::cout << "Conjugate Gradient Optimizer Test \n \n";
typedef itk::ConjugateGradientOptimizer OptimizerType;
typedef OptimizerType::InternalOptimizerType vnlOptimizerType;
// Declaration of a itkOptimizer
OptimizerType::Pointer itkOptimizer = OptimizerType::New();
// Declaration of the CostFunction adaptor
conjugateCostFunction::Pointer costFunction = conjugateCostFunction::New();
itkOptimizer->SetCostFunction( costFunction.GetPointer() );
vnlOptimizerType * vnlOptimizer = itkOptimizer->GetOptimizer();
const double F_Tolerance = 1e-3; // Function value tolerance
const double G_Tolerance = 1e-4; // Gradient magnitude tolerance
const double X_Tolerance = 1e-8; // Search space tolerance
const double Epsilon_Function = 1e-10; // Step
const int Max_Iterations = 100; // Maximum number of iterations
vnlOptimizer->set_f_tolerance( F_Tolerance );
vnlOptimizer->set_g_tolerance( G_Tolerance );
vnlOptimizer->set_x_tolerance( X_Tolerance );
vnlOptimizer->set_epsilon_function( Epsilon_Function );
vnlOptimizer->set_max_function_evals( Max_Iterations );
vnlOptimizer->set_check_derivatives( 3 );
OptimizerType::ParametersType initialValue(2); // constructor requires vector size
// We start not so far from | 2 -2 |
initialValue[0] = 100;
initialValue[1] = -100;
OptimizerType::ParametersType currentValue(2);
currentValue = initialValue;
itkOptimizer->SetInitialPosition( currentValue );
CommandIterationUpdateConjugateGradient::Pointer observer =
CommandIterationUpdateConjugateGradient::New();
itkOptimizer->AddObserver( itk::IterationEvent(), observer );
itkOptimizer->AddObserver( itk::FunctionEvaluationIterationEvent(), observer );
try
{
itkOptimizer->StartOptimization();
}
catch( itk::ExceptionObject & e )
{
std::cout << "Exception thrown ! " << std::endl;
std::cout << "An error ocurred during Optimization" << std::endl;
std::cout << "Location = " << e.GetLocation() << std::endl;
std::cout << "Description = " << e.GetDescription() << std::endl;
return EXIT_FAILURE;
}
std::cout << "Number of iters = " << itkOptimizer->GetCurrentIteration() << std::endl;
std::cout << "Number of evals = " << vnlOptimizer->get_num_evaluations() << std::endl;
std::cout << "Report from vnl optimizer: " << std::endl;
vnlOptimizer->diagnose_outcome( std::cout );
std::cout << std::endl;
//
// check results to see if it is within range
//
OptimizerType::ParametersType finalPosition;
finalPosition = itkOptimizer->GetCurrentPosition();
std::cout << "Solution = (";
std::cout << finalPosition[0] << "," ;
std::cout << finalPosition[1] << ")" << std::endl;
bool pass = true;
double trueParameters[2] = { 2, -2 };
for( unsigned int j = 0; j < 2; j++ )
{
if( vnl_math_abs( finalPosition[j] - trueParameters[j] ) > 0.01 )
pass = false;
}
if( !pass )
{
std::cout << "Test failed." << std::endl;
return EXIT_FAILURE;
}
// Get the final value of the optimizer
std::cout << "Testing GetValue() : ";
OptimizerType::MeasureType finalValue = itkOptimizer->GetValue();
if(fabs(finalValue+10.0)>0.01)
{
std::cout << "[FAILURE]" << std::endl;
return EXIT_FAILURE;
}
else
{
std::cout << "[SUCCESS]" << std::endl;
}
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -